Documentation Verification Report

Tape

πŸ“ Source: Mathlib/Computability/Tape.lean

Statistics

MetricCount
DefinitionsBlankExtends, above, BlankRel, above, below, setoid, Dir, ListBlank, append, cons, flatMap, hasEmptyc, head, inhabited, liftOn, map, mk, modifyNth, nth, tail, PointedMap, f, Tape, Tape, Tape, head, inhabited, left, leftβ‚€, map, mk', mk₁, mkβ‚‚, move, nth, right, rightβ‚€, write, instCoeFunPointedMapForall, instDecidableEqDir, instInhabitedDir, default, instInhabitedPointedMap, proj
44
Theoremsabove_of_le, below_of_le, refl, trans, equivalence, refl, trans, append_assoc, append_mk, cons_flatMap, cons_head_tail, cons_mk, exists_cons, ext, ext_iff, flatMap_mk, head_cons, head_map, head_mk, induction_on, map_cons, map_mk, map_modifyNth, nth_map, nth_mk, nth_modifyNth, nth_succ, nth_zero, tail_cons, tail_map, tail_mk, headI_map, map_pt, map_pt', mk_val, exists_mk', map_fst, map_mk', map_mk₁, map_mkβ‚‚, map_move, map_write, mk'_head, mk'_left, mk'_left_rightβ‚€, mk'_nth_nat, mk'_right, mk'_rightβ‚€, move_left_mk', move_left_nth, move_left_right, move_right_left, move_right_mk', move_right_n_head, move_right_nth, nth_zero, rightβ‚€_nth, write_mk, write_mk', write_move_right_n, write_nth, write_self, proj_map_nth
63
Total107

Turing

Definitions

NameCategoryTheorems
BlankExtends πŸ“–MathDef
1 mathmath: BlankExtends.refl
BlankRel πŸ“–MathDef
2 mathmath: BlankRel.equivalence, BlankRel.refl
Dir πŸ“–CompDataβ€”
ListBlank πŸ“–CompOp
4 mathmath: TM2to1.tr_respects_aux₁, TM2to1.tr_respects_aux₃, TM2to1.tr_eval_dom, TM2to1.tr_respects_auxβ‚‚
PointedMap πŸ“–CompDataβ€”
Tape πŸ“–CompData
8 mathmath: TM2to1.tr_respects_aux₁, Tape.move_right_n_head, TM2to1.tr_respects_aux₃, Tape.write_move_right_n, TM1to1.trTape'_move_left, TM1to1.stepAux_move, TM1to1.trTape'_move_right, TM2to1.tr_respects_auxβ‚‚
instCoeFunPointedMapForall πŸ“–CompOpβ€”
instDecidableEqDir πŸ“–CompOpβ€”
instInhabitedDir πŸ“–CompOpβ€”
instInhabitedPointedMap πŸ“–CompOpβ€”
proj πŸ“–CompOp
2 mathmath: TM2to1.tr_eval, proj_map_nth

Theorems

NameKindAssumesProvesValidatesDepends On
proj_map_nth πŸ“–mathematicalβ€”ListBlank.nth
ListBlank.map
proj
β€”ListBlank.nth_map

Turing.BlankExtends

Definitions

NameCategoryTheorems
above πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
above_of_le πŸ“–β€”Turing.BlankExtendsβ€”β€”List.replicate_add
below_of_le πŸ“–β€”Turing.BlankExtendsβ€”β€”β€”
refl πŸ“–mathematicalβ€”Turing.BlankExtendsβ€”β€”
trans πŸ“–β€”Turing.BlankExtendsβ€”β€”β€”

Turing.BlankRel

Definitions

NameCategoryTheorems
above πŸ“–CompOpβ€”
below πŸ“–CompOpβ€”
setoid πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
equivalence πŸ“–mathematicalβ€”Turing.BlankRelβ€”refl
symm
trans
refl πŸ“–mathematicalβ€”Turing.BlankRelβ€”Turing.BlankExtends.refl
trans πŸ“–β€”Turing.BlankRelβ€”β€”β€”

Turing.ListBlank

Definitions

NameCategoryTheorems
append πŸ“–CompOp
3 mathmath: append_mk, append_assoc, cons_flatMap
cons πŸ“–CompOp
13 mathmath: Turing.Tape.move_left_mk', Turing.TM1to1.stepAux_write, exists_cons, head_cons, map_cons, Turing.Tape.write_mk', tail_cons, cons_flatMap, Turing.TM1to1.trTape'_move_left, cons_mk, Turing.Tape.move_right_mk', Turing.TM1to1.trTape'_move_right, cons_head_tail
flatMap πŸ“–CompOp
2 mathmath: flatMap_mk, cons_flatMap
hasEmptyc πŸ“–CompOp
3 mathmath: Turing.TM2to1.tr_respects_aux₁, Turing.TM2to1.tr_respects_aux₃, Turing.TM2to1.tr_respects_auxβ‚‚
head πŸ“–CompOp
12 mathmath: nth_zero, head_map, Turing.Tape.move_left_mk', Turing.TM1to1.stepAux_read, head_cons, Turing.Tape.mk'_head, head_mk, Turing.TM1to1.trTape'_move_left, Turing.TM2to1.addBottom_head_fst, Turing.Tape.move_right_mk', Turing.TM1to1.trTape'_move_right, cons_head_tail
inhabited πŸ“–CompOpβ€”
liftOn πŸ“–CompOpβ€”
map πŸ“–CompOp
10 mathmath: head_map, map_mk, map_modifyNth, map_cons, tail_map, Turing.Tape.map_mk', Turing.TM2to1.tr_eval, Turing.TM2to1.addBottom_map, nth_map, Turing.proj_map_nth
mk πŸ“–CompOpβ€”
modifyNth πŸ“–CompOp
4 mathmath: Turing.TM2to1.addBottom_modifyNth, nth_modifyNth, map_modifyNth, Turing.Tape.write_move_right_n
nth πŸ“–CompOp
13 mathmath: Turing.TM2to1.addBottom_nth_succ_fst, nth_zero, ext_iff, nth_modifyNth, Turing.TM2to1.stk_nth_val, nth_succ, Turing.Tape.write_move_right_n, Turing.Tape.mk'_nth_nat, Turing.Tape.rightβ‚€_nth, nth_map, nth_mk, Turing.TM2to1.addBottom_nth_snd, Turing.proj_map_nth
tail πŸ“–CompOp
11 mathmath: Turing.Tape.move_left_mk', tail_mk, nth_succ, Turing.Tape.write_mk', tail_cons, tail_map, Turing.TM1to1.trTape'_move_left, Turing.Tape.move_right_mk', Turing.TM1to1.trTape'_move_right, cons_head_tail, Turing.Tape.mk'_right

Theorems

NameKindAssumesProvesValidatesDepends On
append_assoc πŸ“–mathematicalβ€”appendβ€”induction_on
append_mk πŸ“–mathematicalβ€”appendβ€”β€”
cons_flatMap πŸ“–mathematicalβ€”flatMap
cons
append
β€”induction_on
cons_head_tail πŸ“–mathematicalβ€”cons
head
tail
β€”Quotient.ind'
Quotient.sound'
Turing.BlankExtends.refl
cons_mk πŸ“–mathematicalβ€”consβ€”β€”
exists_cons πŸ“–mathematicalβ€”consβ€”cons_head_tail
ext πŸ“–β€”nthβ€”β€”induction_on
Quotient.sound'
lt_or_ge
List.getI_eq_getElem
List.getI_eq_default
le_total
ext_iff πŸ“–mathematicalβ€”nthβ€”ext
flatMap_mk πŸ“–mathematicalβ€”flatMapβ€”β€”
head_cons πŸ“–mathematicalβ€”head
cons
β€”Quotient.ind'
head_map πŸ“–mathematicalβ€”head
map
Turing.PointedMap.f
β€”cons_head_tail
Quotient.inductionOn'
head_mk πŸ“–mathematicalβ€”head
List.headI
β€”β€”
induction_on πŸ“–β€”β€”β€”β€”Quotient.inductionOn'
map_cons πŸ“–mathematicalβ€”map
cons
Turing.PointedMap.f
β€”cons_head_tail
head_map
head_cons
tail_map
tail_cons
map_mk πŸ“–mathematicalβ€”map
Turing.PointedMap.f
β€”β€”
map_modifyNth πŸ“–mathematicalTuring.PointedMap.fmap
modifyNth
β€”map_cons
head_map
tail_map
nth_map πŸ“–mathematicalβ€”nth
map
Turing.PointedMap.f
β€”induction_on
List.getD_map
Turing.PointedMap.map_pt
nth_mk πŸ“–mathematicalβ€”nth
List.getI
β€”β€”
nth_modifyNth πŸ“–mathematicalβ€”nth
modifyNth
β€”nth_zero
head_cons
nth_succ
tail_cons
nth_succ πŸ“–mathematicalβ€”nth
tail
β€”cons_head_tail
Quotient.inductionOn'
nth_zero πŸ“–mathematicalβ€”nth
head
β€”cons_head_tail
Quotient.inductionOn'
tail_cons πŸ“–mathematicalβ€”tail
cons
β€”Quotient.ind'
tail_map πŸ“–mathematicalβ€”tail
map
β€”cons_head_tail
Quotient.inductionOn'
tail_mk πŸ“–mathematicalβ€”tailβ€”β€”

Turing.PointedMap

Definitions

NameCategoryTheorems
f πŸ“–CompOp
13 mathmath: headI_map, Turing.ListBlank.head_map, Turing.ListBlank.map_mk, map_pt', Turing.TM0.map_init, Turing.ListBlank.map_cons, Turing.Tape.map_fst, Turing.Tape.map_mk₁, Turing.Tape.map_mkβ‚‚, Turing.Tape.map_write, Turing.ListBlank.nth_map, mk_val, map_pt

Theorems

NameKindAssumesProvesValidatesDepends On
headI_map πŸ“–mathematicalβ€”List.headI
f
β€”map_pt
map_pt πŸ“–mathematicalβ€”fβ€”map_pt'
map_pt' πŸ“–mathematicalβ€”fβ€”β€”
mk_val πŸ“–mathematicalβ€”fβ€”β€”

Turing.TM0.Cfg

Definitions

NameCategoryTheorems
Tape πŸ“–CompOpβ€”

Turing.TM1.Cfg

Definitions

NameCategoryTheorems
Tape πŸ“–CompOpβ€”

Turing.Tape

Definitions

NameCategoryTheorems
head πŸ“–CompOp
5 mathmath: move_right_n_head, nth_zero, write_self, mk'_head, map_fst
inhabited πŸ“–CompOpβ€”
left πŸ“–CompOp
2 mathmath: mk'_left_rightβ‚€, mk'_left
leftβ‚€ πŸ“–CompOpβ€”
map πŸ“–CompOp
6 mathmath: map_fst, map_mk₁, map_mk', map_mkβ‚‚, map_write, map_move
mk' πŸ“–CompOp
16 mathmath: Turing.TM2to1.tr_respects_aux₁, move_left_mk', Turing.TM1to1.trTape_mk', mk'_left_rightβ‚€, mk'_left, Turing.TM2to1.tr_respects_aux₃, write_move_right_n, exists_mk', write_mk', mk'_head, mk'_rightβ‚€, map_mk', mk'_nth_nat, move_right_mk', Turing.TM2to1.tr_respects_auxβ‚‚, mk'_right
mk₁ πŸ“–CompOp
1 mathmath: map_mk₁
mkβ‚‚ πŸ“–CompOp
1 mathmath: map_mkβ‚‚
move πŸ“–CompOp
15 mathmath: Turing.TM2to1.tr_respects_aux₁, move_right_n_head, move_left_mk', Turing.TM2to1.tr_respects_aux₃, write_move_right_n, move_right_nth, move_left_right, move_right_left, move_left_nth, Turing.TM1to1.trTape'_move_left, Turing.TM1to1.stepAux_move, map_move, move_right_mk', Turing.TM1to1.trTape'_move_right, Turing.TM2to1.tr_respects_auxβ‚‚
nth πŸ“–CompOp
7 mathmath: move_right_n_head, nth_zero, move_right_nth, move_left_nth, mk'_nth_nat, rightβ‚€_nth, write_nth
right πŸ“–CompOp
1 mathmath: mk'_right
rightβ‚€ πŸ“–CompOp
3 mathmath: mk'_left_rightβ‚€, mk'_rightβ‚€, rightβ‚€_nth
write πŸ“–CompOp
6 mathmath: write_move_right_n, write_self, write_mk', write_mk, map_write, write_nth

Theorems

NameKindAssumesProvesValidatesDepends On
exists_mk' πŸ“–mathematicalβ€”mk'β€”mk'_left_rightβ‚€
map_fst πŸ“–mathematicalβ€”head
map
Turing.PointedMap.f
β€”β€”
map_mk' πŸ“–mathematicalβ€”map
mk'
Turing.ListBlank.map
β€”Turing.ListBlank.head_map
Turing.ListBlank.tail_map
map_mk₁ πŸ“–mathematicalβ€”map
mk₁
Turing.PointedMap.f
β€”map_mkβ‚‚
map_mkβ‚‚ πŸ“–mathematicalβ€”map
mkβ‚‚
Turing.PointedMap.f
β€”map_mk'
map_move πŸ“–mathematicalβ€”map
move
β€”Turing.ListBlank.map_cons
Turing.ListBlank.head_map
Turing.ListBlank.tail_map
map_write πŸ“–mathematicalβ€”map
write
Turing.PointedMap.f
β€”β€”
mk'_head πŸ“–mathematicalβ€”head
mk'
Turing.ListBlank.head
β€”β€”
mk'_left πŸ“–mathematicalβ€”left
mk'
β€”β€”
mk'_left_rightβ‚€ πŸ“–mathematicalβ€”mk'
left
rightβ‚€
β€”Turing.ListBlank.head_cons
Turing.ListBlank.tail_cons
mk'_nth_nat πŸ“–mathematicalβ€”nth
mk'
Turing.ListBlank.nth
β€”rightβ‚€_nth
mk'_rightβ‚€
mk'_right πŸ“–mathematicalβ€”right
mk'
Turing.ListBlank.tail
β€”β€”
mk'_rightβ‚€ πŸ“–mathematicalβ€”rightβ‚€
mk'
β€”Turing.ListBlank.cons_head_tail
move_left_mk' πŸ“–mathematicalβ€”move
Turing.Dir.left
mk'
Turing.ListBlank.tail
Turing.ListBlank.cons
Turing.ListBlank.head
β€”Turing.ListBlank.cons_head_tail
Turing.ListBlank.head_cons
Turing.ListBlank.tail_cons
move_left_nth πŸ“–mathematicalβ€”nth
move
Turing.Dir.left
β€”Turing.ListBlank.nth_succ
Turing.ListBlank.nth_zero
Turing.ListBlank.head_cons
add_sub_cancel_right
Turing.ListBlank.tail_cons
move_left_right πŸ“–mathematicalβ€”move
Turing.Dir.right
Turing.Dir.left
β€”Turing.ListBlank.head_cons
Turing.ListBlank.cons_head_tail
Turing.ListBlank.tail_cons
move_right_left πŸ“–mathematicalβ€”move
Turing.Dir.left
Turing.Dir.right
β€”Turing.ListBlank.head_cons
Turing.ListBlank.tail_cons
Turing.ListBlank.cons_head_tail
move_right_mk' πŸ“–mathematicalβ€”move
Turing.Dir.right
mk'
Turing.ListBlank.cons
Turing.ListBlank.head
Turing.ListBlank.tail
β€”β€”
move_right_n_head πŸ“–mathematicalβ€”head
Nat.iterate
Turing.Tape
move
Turing.Dir.right
nth
β€”move_right_nth
move_right_nth πŸ“–mathematicalβ€”nth
move
Turing.Dir.right
β€”move_right_left
move_left_nth
add_sub_cancel_right
nth_zero πŸ“–mathematicalβ€”nth
head
β€”β€”
rightβ‚€_nth πŸ“–mathematicalβ€”Turing.ListBlank.nth
rightβ‚€
nth
β€”Turing.ListBlank.nth_zero
Turing.ListBlank.head_cons
Turing.ListBlank.nth_succ
Turing.ListBlank.tail_cons
write_mk πŸ“–mathematicalβ€”writeβ€”β€”
write_mk' πŸ“–mathematicalβ€”write
mk'
Turing.ListBlank.cons
Turing.ListBlank.tail
β€”Turing.ListBlank.head_cons
Turing.ListBlank.tail_cons
write_move_right_n πŸ“–mathematicalβ€”write
Turing.ListBlank.nth
Nat.iterate
Turing.Tape
move
Turing.Dir.right
mk'
Turing.ListBlank.modifyNth
β€”Turing.ListBlank.nth_zero
write_mk'
Turing.ListBlank.nth_succ
move_right_mk'
Turing.ListBlank.head_cons
Turing.ListBlank.tail_cons
write_nth πŸ“–mathematicalβ€”nth
write
β€”β€”
write_self πŸ“–mathematicalβ€”write
head
β€”β€”

Turing.instInhabitedDir

Definitions

NameCategoryTheorems
default πŸ“–CompOpβ€”

---

← Back to Index