📁 Source: Mathlib/Condensed/AB.lean
hasExactColimitsOfShape
hasExactLimitsOfShape
instAB4CondensedMod
instAB4StarCondensedMod
instAB5CondensedMod
instHasLimitsOfSizeModuleCat
CategoryTheory.Limits.HasLimitsOfShape
CategoryTheory.StructuredArrow
Opposite
Stonean
CategoryTheory.Category.opposite
CompHausLike.category
ExtremallyDisconnected
TopCat.carrier
TopCat.str
CompHaus
CategoryTheory.Functor.op
Stonean.toCompHaus
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.HasExactColimitsOfShape
Condensed
instCategoryCondensed
instHasColimitsOfShapeCondensedOfHasWeakSheafifyCompHausCoherentTopology
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
CompHaus.instHasExplicitFiniteCoproductsTrue
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
CompHaus.instHasExplicitPullbacksTrue
CompHaus.instPreregular
Stonean.instHasExplicitFiniteCoproductsExtremallyDisconnectedCarrier
Stonean.instHasExplicitPullbacksOfInclusionsExtremallyDisconnectedCarrier
Stonean.instPreregular
Stonean.instProjective
CategoryTheory.HasExactColimitsOfShape.domain_of_functor
CategoryTheory.Sheaf.instHasColimitsOfShape
CategoryTheory.Sheaf.instHasExactColimitsOfShapeOfHasFiniteLimitsOfPreservesColimitsOfShapeFunctorOppositeSheafToPresheaf
CategoryTheory.instPreservesColimitsOfShapeSheafExtensiveTopologyFunctorOppositeSheafToPresheafOfPreservesFiniteProductsColim
CategoryTheory.instPreservesFiniteProductsFunctorColimOfPreadditive
CategoryTheory.Limits.PreservesLimits.preservesFiniteLimits
CategoryTheory.Functor.instPreservesLimitsOfSizeOfIsRightAdjoint
CategoryTheory.Functor.isRightAdjoint_of_isEquivalence
CategoryTheory.Equivalence.isEquivalence_functor
CategoryTheory.Limits.reflectsFiniteLimits_of_reflectsIsomorphisms
CategoryTheory.reflectsIsomorphisms_of_full_and_faithful
CategoryTheory.Equivalence.full_functor
CategoryTheory.Equivalence.faithful_functor
instHasFiniteLimitsCondensed
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.HasExactLimitsOfShape
instHasLimitsOfShapeCondensed
CategoryTheory.HasExactLimitsOfShape.domain_of_functor
CategoryTheory.Sheaf.instHasLimitsOfShape
CategoryTheory.Sheaf.instHasExactLimitsOfShapeOfHasFiniteColimitsOfPreservesFiniteColimitsFunctorOppositeSheafToPresheaf
CategoryTheory.instPreservesFiniteColimitsSheafExtensiveTopologyFunctorOppositeSheafToPresheafOfPreadditiveOfHasFiniteColimits
CategoryTheory.Limits.PreservesColimits.preservesFiniteColimits
CategoryTheory.Functor.instPreservesColimitsOfSizeOfIsLeftAdjoint
CategoryTheory.Limits.reflectsFiniteColimitsOfReflectsIsomorphisms
instHasFiniteColimitsCondensedOfHasWeakSheafifyCompHausCoherentTopology
CategoryTheory.Functor.instPreservesLimitsOfShapeOfIsRightAdjoint
CategoryTheory.AB4
CondensedMod
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.Discrete
CategoryTheory.discreteCategory
ModuleCat.hasColimitsOfShape
AddCommGrpCat.hasColimitsOfShape
CategoryTheory.instSmallDiscrete
UnivLE.small
UnivLE.self
CategoryTheory.sheafToPresheaf_isRightAdjoint
CategoryTheory.coherentTopology
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.types
CategoryTheory.forget
ModuleCat.instIsRightAdjointForgetLinearMapIdCarrier
ModuleCat.hasLimit
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.GrothendieckTopology.Cover.index
small_subtype
small_Pi
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
Set
Set.instMembership
CategoryTheory.Functor.sections
CategoryTheory.GrothendieckTopology.Cover
Preorder.smallCategory
CategoryTheory.GrothendieckTopology.instPreorderCover
Opposite.small
CategoryTheory.Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
ModuleCat.FilteredColimits.forget_preservesFilteredColimits
CategoryTheory.isFiltered_op_of_isCofiltered
CategoryTheory.isCofiltered_of_directed_ge_nonempty
SemilatticeInf.instIsCodirectedOrder
CategoryTheory.GrothendieckTopology.Cover.instSemilatticeInf
CategoryTheory.GrothendieckTopology.Cover.instInhabited
ModuleCat.instReflectsIsomorphismsForgetLinearMapIdCarrier
CategoryTheory.AB4.of_AB5
CategoryTheory.Abelian.hasFiniteBiproducts
CategoryTheory.Limits.hasFiniteLimits_of_hasCountableLimits
CategoryTheory.Limits.hasCountableLimits_of_hasLimits
ModuleCat.hasLimits'
CategoryTheory.Limits.hasFilteredColimitsOfSize_of_hasColimitsOfSize
instHasColimitsCondensedMod
CategoryTheory.AB4Star
CategoryTheory.Limits.hasProductsOfShape_of_hasProducts
CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits
CategoryTheory.AB4StarOfSize.ofShape
instAB4StarModuleCat
ModuleCat.instHasFiniteColimits
CategoryTheory.AB5
CategoryTheory.AB5OfSize.ofShape
ModuleCat.hasColimitsOfSize
AddCommGrpCat.hasColimitsOfSize
instAB5ModuleCat
CategoryTheory.Limits.HasLimitsOfSize
CategoryTheory.Limits.hasLimitsOfSizeShrink
---
← Back to Index