Documentation Verification Report

Basic

📁 Source: Mathlib/Condensed/Discrete/Basic.lean

Statistics

MetricCount
Definitionsdiscrete, discreteUnderlyingAdj, underlying, discrete, discreteUnderlyingAdj, underlying, discrete, discreteUnderlyingAdj, underlying
9
Theoremsdiscrete_map, discrete_obj, underlying_map, underlying_obj, discrete_map, discrete_obj, underlying_map, underlying_obj
8
Total17

Condensed

Definitions

NameCategoryTheorems
discrete 📖CompOp
9 mathmath: CondensedMod.isDiscrete_tfae, discrete_map, CondensedMod.LocallyConstant.instFaithfulModuleCatCondensedDiscrete, CondensedMod.LocallyConstant.instFullModuleCatCondensedDiscrete, CondensedSet.isDiscrete_tfae, CondensedMod.LocallyConstant.instIsIsoCondensedSetMapForgetAppCondensedModuleCatCounitDiscreteUnderlyingAdjObjFunctor, CondensedSet.LocallyConstant.instFaithfulCondensedTypeDiscrete, CondensedSet.LocallyConstant.instFullCondensedTypeDiscrete, discrete_obj
discreteUnderlyingAdj 📖CompOp
3 mathmath: CondensedMod.isDiscrete_tfae, CondensedSet.isDiscrete_tfae, CondensedMod.LocallyConstant.instIsIsoCondensedSetMapForgetAppCondensedModuleCatCounitDiscreteUnderlyingAdjObjFunctor
underlying 📖CompOp
5 mathmath: CondensedMod.isDiscrete_tfae, CondensedSet.isDiscrete_tfae, CondensedMod.LocallyConstant.instIsIsoCondensedSetMapForgetAppCondensedModuleCatCounitDiscreteUnderlyingAdjObjFunctor, underlying_obj, underlying_map

Theorems

NameKindAssumesProvesValidatesDepends On
discrete_map 📖mathematicalCategoryTheory.Functor.map
Condensed
instCategoryCondensed
discrete
CategoryTheory.Functor
Opposite
CompHaus
CategoryTheory.Category.opposite
CompHausLike.category
CategoryTheory.Functor.category
CategoryTheory.Sheaf
CategoryTheory.coherentTopology
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.presheafToSheaf
CategoryTheory.Functor.obj
CategoryTheory.Functor.const
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
CompHaus.instHasExplicitFiniteCoproductsTrue
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
CompHaus.instHasExplicitPullbacksTrue
CompHaus.instPreregular
discrete_obj 📖mathematicalCategoryTheory.Functor.obj
Condensed
instCategoryCondensed
discrete
CategoryTheory.Functor
Opposite
CompHaus
CategoryTheory.Category.opposite
CompHausLike.category
CategoryTheory.Functor.category
CategoryTheory.Sheaf
CategoryTheory.coherentTopology
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.presheafToSheaf
CategoryTheory.Functor.const
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
CompHaus.instHasExplicitFiniteCoproductsTrue
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
CompHaus.instHasExplicitPullbacksTrue
CompHaus.instPreregular
underlying_map 📖mathematicalCategoryTheory.Functor.map
Condensed
instCategoryCondensed
underlying
CategoryTheory.NatTrans.app
Opposite
CompHaus
CategoryTheory.Category.opposite
CompHausLike.category
CategoryTheory.Sheaf.val
CategoryTheory.coherentTopology
CategoryTheory.Sheaf.Hom.val
Opposite.op
CompHaus.of
instTopologicalSpacePUnit
underlying_obj 📖mathematicalCategoryTheory.Functor.obj
Condensed
instCategoryCondensed
underlying
Opposite
CompHaus
CategoryTheory.Category.opposite
CompHausLike.category
CategoryTheory.Sheaf.val
CategoryTheory.coherentTopology
Opposite.op
CompHaus.of
instTopologicalSpacePUnit

LightCondSet

Definitions

NameCategoryTheorems
discrete 📖CompOp
discreteUnderlyingAdj 📖CompOp
underlying 📖CompOp

LightCondensed

Definitions

NameCategoryTheorems
discrete 📖CompOp
9 mathmath: LightCondMod.isDiscrete_tfae, discrete_map, LightCondSet.LocallyConstant.instFaithfulLightCondensedTypeDiscrete, LightCondMod.LocallyConstant.instIsIsoLightCondSetMapForgetAppLightCondensedModuleCatCounitDiscreteUnderlyingAdjObjFunctor, LightCondSet.LocallyConstant.instFullLightCondensedTypeDiscrete, LightCondMod.LocallyConstant.instFaithfulModuleCatLightCondensedDiscrete, discrete_obj, LightCondSet.isDiscrete_tfae, LightCondMod.LocallyConstant.instFullModuleCatLightCondensedDiscrete
discreteUnderlyingAdj 📖CompOp
3 mathmath: LightCondMod.isDiscrete_tfae, LightCondMod.LocallyConstant.instIsIsoLightCondSetMapForgetAppLightCondensedModuleCatCounitDiscreteUnderlyingAdjObjFunctor, LightCondSet.isDiscrete_tfae
underlying 📖CompOp
5 mathmath: LightCondMod.isDiscrete_tfae, LightCondMod.LocallyConstant.instIsIsoLightCondSetMapForgetAppLightCondensedModuleCatCounitDiscreteUnderlyingAdjObjFunctor, underlying_obj, LightCondSet.isDiscrete_tfae, underlying_map

Theorems

NameKindAssumesProvesValidatesDepends On
discrete_map 📖mathematicalCategoryTheory.Functor.map
LightCondensed
instCategoryLightCondensed
discrete
CategoryTheory.Functor
Opposite
LightProfinite
CategoryTheory.Category.opposite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.Functor.category
CategoryTheory.Sheaf
CategoryTheory.coherentTopology
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.presheafToSheaf
CategoryTheory.Functor.obj
CategoryTheory.Functor.const
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
LightProfinite.instHasExplicitFiniteCoproductsAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
LightProfinite.instHasExplicitPullbacksAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
LightProfinite.instPreregular
discrete_obj 📖mathematicalCategoryTheory.Functor.obj
LightCondensed
instCategoryLightCondensed
discrete
CategoryTheory.Functor
Opposite
LightProfinite
CategoryTheory.Category.opposite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.Functor.category
CategoryTheory.Sheaf
CategoryTheory.coherentTopology
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.presheafToSheaf
CategoryTheory.Functor.const
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
LightProfinite.instHasExplicitFiniteCoproductsAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
LightProfinite.instHasExplicitPullbacksAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
LightProfinite.instPreregular
underlying_map 📖mathematicalCategoryTheory.Functor.map
LightCondensed
instCategoryLightCondensed
underlying
CategoryTheory.NatTrans.app
Opposite
LightProfinite
CategoryTheory.Category.opposite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.Sheaf.val
CategoryTheory.coherentTopology
CategoryTheory.Sheaf.Hom.val
Opposite.op
LightProfinite.of
instTopologicalSpacePUnit
underlying_obj 📖mathematicalCategoryTheory.Functor.obj
LightCondensed
instCategoryLightCondensed
underlying
Opposite
LightProfinite
CategoryTheory.Category.opposite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.Sheaf.val
CategoryTheory.coherentTopology
Opposite.op
LightProfinite.of
instTopologicalSpacePUnit

---

← Back to Index