Documentation Verification Report

Characterization

📁 Source: Mathlib/Condensed/Discrete/Characterization.lean

Statistics

MetricCount
DefinitionsIsDiscrete, adjunction, adjunction, IsDiscrete
4
TheoremsinstHasLimitsOfSizeModuleCat, isDiscrete_iff_isDiscrete_forget, isDiscrete_tfae, isDiscrete_tfae, mem_locallyConstant_essImage_of_isColimit_mapCocone, isDiscrete_iff_isDiscrete_forget, isDiscrete_tfae, isDiscrete_tfae, mem_locallyConstant_essImage_of_isColimit_mapCocone
9
Total13

Condensed

Definitions

NameCategoryTheorems
IsDiscrete 📖MathDef
3 mathmath: CondensedMod.isDiscrete_tfae, CondensedMod.isDiscrete_iff_isDiscrete_forget, CondensedSet.isDiscrete_tfae

CondensedMod

Theorems

NameKindAssumesProvesValidatesDepends On
instHasLimitsOfSizeModuleCat 📖mathematicalCategoryTheory.Limits.HasLimitsOfSize
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.Limits.hasLimitsOfSizeShrink
ModuleCat.hasLimits'
isDiscrete_iff_isDiscrete_forget 📖mathematicalCondensed.IsDiscrete
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.sheafToPresheaf_isRightAdjoint
CompHaus
CompHausLike.category
CategoryTheory.coherentTopology
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
CompHaus.instHasExplicitFiniteCoproductsTrue
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
CompHaus.instHasExplicitPullbacksTrue
CompHaus.instPreregular
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
CategoryTheory.Functor.instPreservesLimitsOfShapeOfIsRightAdjoint
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.types
CategoryTheory.forget
ModuleCat.instIsRightAdjointForgetLinearMapIdCarrier
ModuleCat.hasLimit
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.GrothendieckTopology.Cover.index
small_subtype
small_Pi
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
UnivLE.small
UnivLE.self
Set
Set.instMembership
CategoryTheory.Functor.sections
ModuleCat.hasColimitsOfShape
Opposite
CategoryTheory.GrothendieckTopology.Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
CategoryTheory.GrothendieckTopology.instPreorderCover
AddCommGrpCat.hasColimitsOfShape
Opposite.small
CategoryTheory.Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
ModuleCat.FilteredColimits.forget_preservesFilteredColimits
CategoryTheory.isFiltered_op_of_isCofiltered
CategoryTheory.isCofiltered_of_directed_ge_nonempty
SemilatticeInf.instIsCodirectedOrder
CategoryTheory.GrothendieckTopology.Cover.instSemilatticeInf
CategoryTheory.GrothendieckTopology.Cover.instInhabited
ModuleCat.instReflectsIsomorphismsForgetLinearMapIdCarrier
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Types.instFunLike
CategoryTheory.Types.instConcreteCategory
CategoryTheory.Functor.corepresentable_preservesLimitsOfShape
CategoryTheory.Types.instIsCorepresentableForgetTypeHom
CategoryTheory.Limits.Types.hasLimit
CategoryTheory.Limits.Types.hasColimitsOfShape
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Types.instIsEquivalenceForgetTypeHom
CategoryTheory.instReflectsIsomorphismsForgetTypeHom
CondensedMod
instCategoryCondensed
CondensedSet
Condensed.forget
CategoryTheory.Sheaf.isConstant_iff_forget
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
CompHaus.instHasExplicitFiniteCoproductsTrue
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
CompHaus.instHasExplicitPullbacksTrue
CompHaus.instPreregular
CategoryTheory.sheafToPresheaf_isRightAdjoint
CategoryTheory.Functor.instPreservesLimitsOfShapeOfIsRightAdjoint
ModuleCat.instIsRightAdjointForgetLinearMapIdCarrier
ModuleCat.hasLimit
small_subtype
small_Pi
UnivLE.small
UnivLE.self
ModuleCat.hasColimitsOfShape
AddCommGrpCat.hasColimitsOfShape
Opposite.small
CategoryTheory.Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
ModuleCat.FilteredColimits.forget_preservesFilteredColimits
CategoryTheory.isFiltered_op_of_isCofiltered
CategoryTheory.isCofiltered_of_directed_ge_nonempty
SemilatticeInf.instIsCodirectedOrder
ModuleCat.instReflectsIsomorphismsForgetLinearMapIdCarrier
CategoryTheory.Functor.corepresentable_preservesLimitsOfShape
CategoryTheory.Types.instIsCorepresentableForgetTypeHom
CategoryTheory.Limits.Types.hasLimit
CategoryTheory.Limits.Types.hasColimitsOfShape
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Types.instIsEquivalenceForgetTypeHom
CategoryTheory.instReflectsIsomorphismsForgetTypeHom
CategoryTheory.GrothendieckTopology.instPreservesSheafificationForgetOfPreservesLimitsOfHasColimitsOfShapeOfPreservesColimitsOfShapeOppositeCoverOfHasLimitsOfShapeWalkingMulticospanOfReflectsIsomorphisms
ModuleCat.forget_preservesLimits
CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits
ModuleCat.hasLimits'
CategoryTheory.hasSheafCompose_of_preservesMulticospan
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
LocallyConstant.instFaithfulModuleCatSheafCompHausCoherentTopologyConstantSheaf
LocallyConstant.instFullModuleCatSheafCompHausCoherentTopologyConstantSheaf
LocallyConstant.instFaithfulSheafCompHausCoherentTopologyTypeConstantSheaf
LocallyConstant.instFullSheafCompHausCoherentTopologyTypeConstantSheaf
CategoryTheory.instReflectsIsomorphismsSheafSheafCompose
Finite.compactSpace
Finite.of_fintype
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
isDiscrete_tfae 📖mathematicalList.TFAE
Condensed.IsDiscrete
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.sheafToPresheaf_isRightAdjoint
CompHaus
CompHausLike.category
CategoryTheory.coherentTopology
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
CompHaus.instHasExplicitFiniteCoproductsTrue
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
CompHaus.instHasExplicitPullbacksTrue
CompHaus.instPreregular
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
CategoryTheory.Functor.instPreservesLimitsOfShapeOfIsRightAdjoint
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.types
CategoryTheory.forget
ModuleCat.instIsRightAdjointForgetLinearMapIdCarrier
ModuleCat.hasLimit
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.GrothendieckTopology.Cover.index
small_subtype
small_Pi
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
UnivLE.small
UnivLE.self
Set
Set.instMembership
CategoryTheory.Functor.sections
ModuleCat.hasColimitsOfShape
Opposite
CategoryTheory.GrothendieckTopology.Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
CategoryTheory.GrothendieckTopology.instPreorderCover
AddCommGrpCat.hasColimitsOfShape
Opposite.small
CategoryTheory.Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
ModuleCat.FilteredColimits.forget_preservesFilteredColimits
CategoryTheory.isFiltered_op_of_isCofiltered
CategoryTheory.isCofiltered_of_directed_ge_nonempty
SemilatticeInf.instIsCodirectedOrder
CategoryTheory.GrothendieckTopology.Cover.instSemilatticeInf
CategoryTheory.GrothendieckTopology.Cover.instInhabited
ModuleCat.instReflectsIsomorphismsForgetLinearMapIdCarrier
CategoryTheory.IsIso
Condensed
instCategoryCondensed
Condensed.underlying
Condensed.discrete
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.counit
Condensed.discreteUnderlyingAdj
CategoryTheory.Functor.essImage
CondensedMod
LocallyConstant.functor
LocallyConstant.adjunction
CategoryTheory.Sheaf.IsConstant
Profinite
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
Profinite.instHasExplicitFiniteCoproductsTotallyDisconnectedSpaceCarrier
Profinite.instHasExplicitPullbacksTotallyDisconnectedSpaceCarrier
Profinite.instPreregular
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Equivalence.inverse
Condensed.ProfiniteCompHaus.equivalence
CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits
CategoryTheory.StructuredArrow
CategoryTheory.Functor.op
profiniteToCompHaus
CategoryTheory.instCategoryStructuredArrow
instHasLimitsOfSizeModuleCat
CategoryTheory.sheafToPresheaf_isRightAdjoint
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
CompHaus.instHasExplicitFiniteCoproductsTrue
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
CompHaus.instHasExplicitPullbacksTrue
CompHaus.instPreregular
CategoryTheory.Functor.instPreservesLimitsOfShapeOfIsRightAdjoint
ModuleCat.instIsRightAdjointForgetLinearMapIdCarrier
ModuleCat.hasLimit
small_subtype
small_Pi
UnivLE.small
UnivLE.self
ModuleCat.hasColimitsOfShape
AddCommGrpCat.hasColimitsOfShape
Opposite.small
CategoryTheory.Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
ModuleCat.FilteredColimits.forget_preservesFilteredColimits
CategoryTheory.isFiltered_op_of_isCofiltered
CategoryTheory.isCofiltered_of_directed_ge_nonempty
SemilatticeInf.instIsCodirectedOrder
ModuleCat.instReflectsIsomorphismsForgetLinearMapIdCarrier
CategoryTheory.Sheaf.isConstant_iff_isIso_counit_app
LocallyConstant.instFaithfulModuleCatSheafCompHausCoherentTopologyConstantSheaf
LocallyConstant.instFullModuleCatSheafCompHausCoherentTopologyConstantSheaf
CategoryTheory.Sheaf.isConstant_iff_mem_essImage
Finite.compactSpace
Finite.of_fintype
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
LocallyConstant.instFaithfulModuleCatFunctor
LocallyConstant.instFullModuleCatFunctor
CategoryTheory.Sheaf.isConstant_iff_isIso_counit_app'
Profinite.instHasExplicitFiniteCoproductsTotallyDisconnectedSpaceCarrier
Profinite.instHasExplicitPullbacksTotallyDisconnectedSpaceCarrier
Profinite.instPreregular
CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits
instHasLimitsOfSizeModuleCat
CategoryTheory.coherentTopology.instIsDenseSubsite
CategoryTheory.instPreservesFiniteEffectiveEpiFamiliesOfPreservesEffectiveEpis
CompHausLike.instPreservesFiniteCoproductsToCompHausLike
Profinite.instPreservesEffectiveEpisCompHausProfiniteToCompHaus
CategoryTheory.instReflectsFiniteEffectiveEpiFamiliesOfReflectsEffectiveEpis
Profinite.instReflectsEffectiveEpisCompHausProfiniteToCompHaus
CompHausLike.instFullToCompHausLike
CompHausLike.instFaithfulToCompHausLike
Profinite.instEffectivelyEnoughCompHausProfiniteToCompHaus
CategoryTheory.Sheaf.isConstant_iff_of_equivalence
TotallySeparatedSpace.totallyDisconnectedSpace
TotallySeparatedSpace.of_discrete
instDiscreteTopologyPUnit
CategoryTheory.Functor.corepresentable_preservesLimitsOfShape
CategoryTheory.Types.instIsCorepresentableForgetTypeHom
CategoryTheory.Limits.Types.hasLimit
CategoryTheory.Limits.Types.hasColimitsOfShape
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Types.instIsEquivalenceForgetTypeHom
CategoryTheory.instReflectsIsomorphismsForgetTypeHom
isDiscrete_iff_isDiscrete_forget
List.TFAE.out
CategoryTheory.Limits.Types.hasLimitsOfShape
CondensedSet.isDiscrete_tfae
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.preservesFilteredColimitsOfSize_shrink
CategoryTheory.Limits.reflectsColimit_of_reflectsColimitsOfShape
CategoryTheory.Limits.ReflectsFilteredColimitsOfSize.reflects_filtered_colimits
CategoryTheory.Limits.reflectsFilteredColimitsOfSize_shrink
ModuleCat.FilteredColimits.forget_reflectsFilteredColimits
List.tfae_of_cycle

CondensedSet

Theorems

NameKindAssumesProvesValidatesDepends On
isDiscrete_tfae 📖mathematicalList.TFAE
Condensed.IsDiscrete
CategoryTheory.types
CategoryTheory.sheafToPresheaf_isRightAdjoint
CompHaus
CompHausLike.category
CategoryTheory.coherentTopology
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
CompHaus.instHasExplicitFiniteCoproductsTrue
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
CompHaus.instHasExplicitPullbacksTrue
CompHaus.instPreregular
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Types.instFunLike
CategoryTheory.Types.instConcreteCategory
CategoryTheory.Functor.corepresentable_preservesLimitsOfShape
CategoryTheory.forget
CategoryTheory.Types.instIsCorepresentableForgetTypeHom
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.Types.hasLimit
UnivLE.small
UnivLE.self
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.GrothendieckTopology.Cover.index
CategoryTheory.Limits.Types.hasColimitsOfShape
Opposite
CategoryTheory.GrothendieckTopology.Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
CategoryTheory.GrothendieckTopology.instPreorderCover
Opposite.small
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Types.instIsEquivalenceForgetTypeHom
CategoryTheory.instReflectsIsomorphismsForgetTypeHom
CategoryTheory.IsIso
Condensed
instCategoryCondensed
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
Condensed.underlying
Condensed.discrete
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.counit
Condensed.discreteUnderlyingAdj
CategoryTheory.Functor.essImage
CondensedSet
LocallyConstant.functor
LocallyConstant.adjunction
CategoryTheory.Sheaf.IsConstant
Profinite
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
Profinite.instHasExplicitFiniteCoproductsTotallyDisconnectedSpaceCarrier
Profinite.instHasExplicitPullbacksTotallyDisconnectedSpaceCarrier
Profinite.instPreregular
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.Equivalence.inverse
Condensed.ProfiniteCompHaus.equivalence
CategoryTheory.Limits.Types.hasLimitsOfShape
CategoryTheory.StructuredArrow
CategoryTheory.Functor.op
profiniteToCompHaus
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.sheafToPresheaf_isRightAdjoint
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
CompHaus.instHasExplicitFiniteCoproductsTrue
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
CompHaus.instHasExplicitPullbacksTrue
CompHaus.instPreregular
CategoryTheory.Functor.corepresentable_preservesLimitsOfShape
CategoryTheory.Types.instIsCorepresentableForgetTypeHom
CategoryTheory.Limits.Types.hasLimit
UnivLE.small
UnivLE.self
CategoryTheory.Limits.Types.hasColimitsOfShape
Opposite.small
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Types.instIsEquivalenceForgetTypeHom
CategoryTheory.instReflectsIsomorphismsForgetTypeHom
CategoryTheory.Sheaf.isConstant_iff_isIso_counit_app
CondensedMod.LocallyConstant.instFaithfulSheafCompHausCoherentTopologyTypeConstantSheaf
CondensedMod.LocallyConstant.instFullSheafCompHausCoherentTopologyTypeConstantSheaf
CategoryTheory.Sheaf.isConstant_iff_mem_essImage
Finite.compactSpace
Finite.of_fintype
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
LocallyConstant.instFaithfulFunctor
LocallyConstant.instFullFunctor
CategoryTheory.Sheaf.isConstant_iff_isIso_counit_app'
Profinite.instHasExplicitFiniteCoproductsTotallyDisconnectedSpaceCarrier
Profinite.instHasExplicitPullbacksTotallyDisconnectedSpaceCarrier
Profinite.instPreregular
CategoryTheory.Limits.Types.hasLimitsOfShape
CategoryTheory.coherentTopology.instIsDenseSubsite
CategoryTheory.instPreservesFiniteEffectiveEpiFamiliesOfPreservesEffectiveEpis
CompHausLike.instPreservesFiniteCoproductsToCompHausLike
Profinite.instPreservesEffectiveEpisCompHausProfiniteToCompHaus
CategoryTheory.instReflectsFiniteEffectiveEpiFamiliesOfReflectsEffectiveEpis
Profinite.instReflectsEffectiveEpisCompHausProfiniteToCompHaus
CompHausLike.instFullToCompHausLike
CompHausLike.instFaithfulToCompHausLike
Profinite.instEffectivelyEnoughCompHausProfiniteToCompHaus
CategoryTheory.Sheaf.isConstant_iff_of_equivalence
TotallySeparatedSpace.totallyDisconnectedSpace
TotallySeparatedSpace.of_discrete
instDiscreteTopologyPUnit
mem_locallyConstant_essImage_of_isColimit_mapCocone
List.tfae_of_cycle
mem_locallyConstant_essImage_of_isColimit_mapCocone 📖mathematicalCategoryTheory.Functor.essImage
CondensedSet
CategoryTheory.types
instCategoryCondensed
LocallyConstant.functor
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
Profinite.instHasExplicitFiniteCoproductsTotallyDisconnectedSpaceCarrier
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
Profinite.instHasExplicitPullbacksTotallyDisconnectedSpaceCarrier
Profinite.instPreregular
CategoryTheory.Limits.Types.hasLimitsOfShape
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Presheaf.instPreservesFiniteProductsOppositeVal
CategoryTheory.Equivalence.full_functor
CategoryTheory.Equivalence.faithful_functor
CategoryTheory.instFullSheafFunctorOppositeSheafToPresheaf
CategoryTheory.instFaithfulSheafFunctorOppositeSheafToPresheaf

CondensedSet.LocallyConstant

Definitions

NameCategoryTheorems
adjunction 📖CompOp
1 mathmath: CondensedSet.isDiscrete_tfae

LightCondMod

Theorems

NameKindAssumesProvesValidatesDepends On
isDiscrete_iff_isDiscrete_forget 📖mathematicalLightCondensed.IsDiscrete
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.instHasWeakSheafifyOfHasSheafify
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.coherentTopology
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
LightProfinite.instHasExplicitFiniteCoproductsAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
LightProfinite.instHasExplicitPullbacksAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
LightProfinite.instPreregular
LocallyConstant.instHasSheafifyLightProfiniteCoherentTopologyModuleCat
CategoryTheory.types
LightProfinite.hasSheafify_type
CategoryTheory.Functor.obj
LightCondMod
instCategoryLightCondensed
LightCondSet
LightCondensed.forget
CategoryTheory.Sheaf.isConstant_iff_forget
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
LightProfinite.instHasExplicitFiniteCoproductsAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
LightProfinite.instHasExplicitPullbacksAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
LightProfinite.instPreregular
CategoryTheory.instHasWeakSheafifyOfHasSheafify
LocallyConstant.instHasSheafifyLightProfiniteCoherentTopologyModuleCat
LightProfinite.hasSheafify_type
CategoryTheory.GrothendieckTopology.instPreservesSheafification_1
instEssentiallySmallLightProfinite
CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits
ModuleCat.hasLimits'
CategoryTheory.Limits.Types.hasLimitsOfShape
UnivLE.small
UnivLE.self
CategoryTheory.GrothendieckTopology.instPreservesSheafificationForgetOfPreservesLimitsOfHasColimitsOfShapeOfPreservesColimitsOfShapeOppositeCoverOfHasLimitsOfShapeWalkingMulticospanOfReflectsIsomorphisms
CategoryTheory.Functor.locallyCoverDense_of_isCoverDense
CategoryTheory.Functor.IsLocallyFull.of_full
CategoryTheory.Equivalence.full_inverse
CategoryTheory.Equivalence.instIsCoverDenseOfIsEquivalence
CategoryTheory.Equivalence.isEquivalence_inverse
CategoryTheory.Functor.IsLocallyFaithful.of_faithful
CategoryTheory.Equivalence.faithful_inverse
ModuleCat.forget_preservesLimits
ModuleCat.hasColimitsOfShape
AddCommGrpCat.hasColimitsOfShape
Opposite.small
CategoryTheory.Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
ModuleCat.FilteredColimits.forget_preservesFilteredColimits
CategoryTheory.isFiltered_op_of_isCofiltered
CategoryTheory.isCofiltered_of_directed_ge_nonempty
SemilatticeInf.instIsCodirectedOrder
ModuleCat.instReflectsIsomorphismsForgetLinearMapIdCarrier
CategoryTheory.hasSheafCompose_of_preservesMulticospan
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Functor.instPreservesLimitsOfShapeOfIsRightAdjoint
ModuleCat.instIsRightAdjointForgetLinearMapIdCarrier
LocallyConstant.instFaithfulModuleCatSheafLightProfiniteCoherentTopologyConstantSheaf
LocallyConstant.instFullModuleCatSheafLightProfiniteCoherentTopologyConstantSheaf
LocallyConstant.instFaithfulSheafLightProfiniteCoherentTopologyTypeConstantSheaf
LocallyConstant.instFullSheafLightProfiniteCoherentTopologyTypeConstantSheaf
CategoryTheory.instReflectsIsomorphismsSheafSheafCompose
Finite.compactSpace
Finite.of_fintype
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
TotallySeparatedSpace.totallyDisconnectedSpace
TotallySeparatedSpace.of_discrete
instDiscreteTopologyPUnit
TopologicalSpace.instSecondCountableTopologyOfLindelofSpaceOfPseudoMetrizableSpace
Countable.LindelofSpace
instCountablePUnit
PseudoEMetricSpace.pseudoMetrizableSpace
isDiscrete_tfae 📖mathematicalList.TFAE
LightCondensed.IsDiscrete
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.instHasWeakSheafifyOfHasSheafify
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.coherentTopology
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
LightProfinite.instHasExplicitFiniteCoproductsAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
LightProfinite.instHasExplicitPullbacksAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
LightProfinite.instPreregular
LocallyConstant.instHasSheafifyLightProfiniteCoherentTopologyModuleCat
CategoryTheory.IsIso
LightCondensed
instCategoryLightCondensed
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
LightCondensed.underlying
LightCondensed.discrete
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.counit
LightCondensed.discreteUnderlyingAdj
CategoryTheory.Functor.essImage
LightCondMod
LocallyConstant.functor
LocallyConstant.adjunction
CategoryTheory.instHasWeakSheafifyOfHasSheafify
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
LightProfinite.instHasExplicitFiniteCoproductsAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
LightProfinite.instHasExplicitPullbacksAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
LightProfinite.instPreregular
LocallyConstant.instHasSheafifyLightProfiniteCoherentTopologyModuleCat
CategoryTheory.Sheaf.isConstant_iff_isIso_counit_app
LocallyConstant.instFaithfulModuleCatSheafLightProfiniteCoherentTopologyConstantSheaf
LocallyConstant.instFullModuleCatSheafLightProfiniteCoherentTopologyConstantSheaf
LightProfinite.instHasPropAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
CategoryTheory.Sheaf.isConstant_iff_mem_essImage
Finite.compactSpace
Finite.of_fintype
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
TotallySeparatedSpace.totallyDisconnectedSpace
TotallySeparatedSpace.of_discrete
instDiscreteTopologyPUnit
TopologicalSpace.instSecondCountableTopologyOfLindelofSpaceOfPseudoMetrizableSpace
Countable.LindelofSpace
instCountablePUnit
PseudoEMetricSpace.pseudoMetrizableSpace
LocallyConstant.instFaithfulModuleCatFunctor
LocallyConstant.instFullModuleCatFunctor
CategoryTheory.Sheaf.isConstant_iff_isIso_counit_app'
LightProfinite.hasSheafify_type
isDiscrete_iff_isDiscrete_forget
List.TFAE.out
LightCondSet.isDiscrete_tfae
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
CategoryTheory.Limits.preservesFilteredColimitsOfSize_shrink
ModuleCat.FilteredColimits.forget_preservesFilteredColimits
CategoryTheory.isFiltered_of_directed_le_nonempty
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
CategoryTheory.Limits.reflectsColimit_of_reflectsColimitsOfShape
CategoryTheory.Limits.ReflectsFilteredColimitsOfSize.reflects_filtered_colimits
CategoryTheory.Limits.reflectsFilteredColimitsOfSize_shrink
ModuleCat.FilteredColimits.forget_reflectsFilteredColimits
List.tfae_of_cycle

LightCondSet

Theorems

NameKindAssumesProvesValidatesDepends On
isDiscrete_tfae 📖mathematicalList.TFAE
LightCondensed.IsDiscrete
CategoryTheory.types
CategoryTheory.instHasWeakSheafifyOfHasSheafify
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.coherentTopology
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
LightProfinite.instHasExplicitFiniteCoproductsAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
LightProfinite.instHasExplicitPullbacksAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
LightProfinite.instPreregular
LightProfinite.hasSheafify_type
CategoryTheory.IsIso
LightCondensed
instCategoryLightCondensed
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
LightCondensed.underlying
LightCondensed.discrete
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.counit
LightCondensed.discreteUnderlyingAdj
CategoryTheory.Functor.essImage
LightCondSet
LocallyConstant.functor
LocallyConstant.adjunction
CategoryTheory.instHasWeakSheafifyOfHasSheafify
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
LightProfinite.instHasExplicitFiniteCoproductsAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
LightProfinite.instHasExplicitPullbacksAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
LightProfinite.instPreregular
LightProfinite.hasSheafify_type
CategoryTheory.Sheaf.isConstant_iff_isIso_counit_app
LightCondMod.LocallyConstant.instFaithfulSheafLightProfiniteCoherentTopologyTypeConstantSheaf
LightCondMod.LocallyConstant.instFullSheafLightProfiniteCoherentTopologyTypeConstantSheaf
LightProfinite.instHasPropAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
CategoryTheory.Sheaf.isConstant_iff_mem_essImage
Finite.compactSpace
Finite.of_fintype
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
TotallySeparatedSpace.totallyDisconnectedSpace
TotallySeparatedSpace.of_discrete
instDiscreteTopologyPUnit
TopologicalSpace.instSecondCountableTopologyOfLindelofSpaceOfPseudoMetrizableSpace
Countable.LindelofSpace
instCountablePUnit
PseudoEMetricSpace.pseudoMetrizableSpace
LocallyConstant.instFaithfulFunctor
LocallyConstant.instFullFunctor
CategoryTheory.Sheaf.isConstant_iff_isIso_counit_app'
mem_locallyConstant_essImage_of_isColimit_mapCocone
List.tfae_of_cycle
mem_locallyConstant_essImage_of_isColimit_mapCocone 📖mathematicalCategoryTheory.Functor.essImage
LightCondSet
CategoryTheory.types
instCategoryLightCondensed
LocallyConstant.functor
CategoryTheory.Presheaf.instPreservesFiniteProductsOppositeVal
LightProfinite.instPreregular
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
LightProfinite.instHasExplicitFiniteCoproductsAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
LightProfinite.instHasExplicitPullbacksAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
CategoryTheory.instFullSheafFunctorOppositeSheafToPresheaf
CategoryTheory.instFaithfulSheafFunctorOppositeSheafToPresheaf

LightCondSet.LocallyConstant

Definitions

NameCategoryTheorems
adjunction 📖CompOp
1 mathmath: LightCondSet.isDiscrete_tfae

LightCondensed

Definitions

NameCategoryTheorems
IsDiscrete 📖MathDef
3 mathmath: LightCondMod.isDiscrete_tfae, LightCondSet.isDiscrete_tfae, LightCondMod.isDiscrete_iff_isDiscrete_forget

---

← Back to Index