Documentation Verification Report

Colimit

📁 Source: Mathlib/Condensed/Discrete/Colimit.lean

Statistics

MetricCount
DefinitionsfinYoneda, fintypeCatAsCofan, fintypeCatAsCofanIsColimit, isColimitLocallyConstantPresheaf, isColimitLocallyConstantPresheafDiagram, isoFinYoneda, isoFinYonedaComponents, isoLocallyConstantOfIsColimit, lanCondensedSet, lanPresheaf, lanPresheafExt, lanPresheafIso, lanPresheafNatIso, lanSheafProfinite, locallyConstantIsoFinYoneda, locallyConstantPresheaf, finYoneda, fintypeCatAsCofan, fintypeCatAsCofanIsColimit, isColimitLocallyConstantPresheaf, isColimitLocallyConstantPresheafDiagram, isoFinYoneda, isoFinYonedaComponents, isoLocallyConstantOfIsColimit, lanLightCondSet, lanPresheaf, lanPresheafExt, lanPresheafIso, lanPresheafNatIso, locallyConstantIsoFinYoneda, locallyConstantPresheaf
31
TheoremsfinYoneda_map, finYoneda_obj, instFinalOppositeDiscreteQuotientCarrierToTopTotallyDisconnectedSpaceCostructuredArrowFintypeCatProfiniteOpToProfiniteOpPtAsLimitConeFunctorOp, instPreservesLimitsOfShapeOppositeProfiniteDiscreteCarrierToTopTotallyDisconnectedSpaceOfFinite, isColimitLocallyConstantPresheafDiagram_desc_apply, isColimitLocallyConstantPresheaf_desc_apply, isoFinYonedaComponents_hom_apply, isoFinYonedaComponents_inv_comp, isoFinYoneda_hom_app, isoFinYoneda_inv_app, isoLocallyConstantOfIsColimit_inv, lanPresheafExt_hom, lanPresheafExt_inv, lanPresheafIso_hom, lanPresheafNatIso_hom_app, locallyConstantIsoFinYoneda_hom_app, finYoneda_map, finYoneda_obj, instFinalNatCostructuredArrowOppositeFintypeCatLightProfiniteOpToLightProfiniteOpPtAsLimitConeFunctorOp, instHasColimitsOfShapeCostructuredArrowOppositeFintypeCatLightProfiniteOpToLightProfiniteType, instPreservesLimitsOfShapeOppositeLightProfiniteDiscreteCarrier, isColimitLocallyConstantPresheafDiagram_desc_apply, isColimitLocallyConstantPresheaf_desc_apply, isoFinYonedaComponents_hom_apply, isoFinYonedaComponents_inv_comp, isoFinYoneda_hom_app, isoFinYoneda_inv_app, isoLocallyConstantOfIsColimit_inv, lanPresheafExt_hom, lanPresheafExt_inv, lanPresheafIso_hom, lanPresheafNatIso_hom_app
32
Total63

Condensed

Definitions

NameCategoryTheorems
finYoneda 📖CompOp
5 mathmath: finYoneda_obj, finYoneda_map, isoFinYoneda_hom_app, isoFinYoneda_inv_app, locallyConstantIsoFinYoneda_hom_app
fintypeCatAsCofan 📖CompOp
fintypeCatAsCofanIsColimit 📖CompOp
isColimitLocallyConstantPresheaf 📖CompOp
1 mathmath: isColimitLocallyConstantPresheaf_desc_apply
isColimitLocallyConstantPresheafDiagram 📖CompOp
1 mathmath: isColimitLocallyConstantPresheafDiagram_desc_apply
isoFinYoneda 📖CompOp
2 mathmath: isoFinYoneda_hom_app, isoFinYoneda_inv_app
isoFinYonedaComponents 📖CompOp
4 mathmath: isoFinYonedaComponents_hom_apply, isoFinYonedaComponents_inv_comp, isoFinYoneda_hom_app, isoFinYoneda_inv_app
isoLocallyConstantOfIsColimit 📖CompOp
1 mathmath: isoLocallyConstantOfIsColimit_inv
lanCondensedSet 📖CompOp
lanPresheaf 📖CompOp
4 mathmath: lanPresheafExt_inv, lanPresheafNatIso_hom_app, lanPresheafExt_hom, lanPresheafIso_hom
lanPresheafExt 📖CompOp
2 mathmath: lanPresheafExt_inv, lanPresheafExt_hom
lanPresheafIso 📖CompOp
1 mathmath: lanPresheafIso_hom
lanPresheafNatIso 📖CompOp
1 mathmath: lanPresheafNatIso_hom_app
lanSheafProfinite 📖CompOp
locallyConstantIsoFinYoneda 📖CompOp
1 mathmath: locallyConstantIsoFinYoneda_hom_app
locallyConstantPresheaf 📖CompOp
4 mathmath: isColimitLocallyConstantPresheaf_desc_apply, isoLocallyConstantOfIsColimit_inv, isColimitLocallyConstantPresheafDiagram_desc_apply, locallyConstantIsoFinYoneda_hom_app

Theorems

NameKindAssumesProvesValidatesDepends On
finYoneda_map 📖mathematicalCategoryTheory.Functor.map
Opposite
FintypeCat
CategoryTheory.Category.opposite
FintypeCat.instCategory
CategoryTheory.types
finYoneda
FintypeCat.carrier
Opposite.unop
CategoryTheory.Functor.obj
Profinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
CategoryTheory.Functor.op
FintypeCat.toProfinite
Opposite.op
FintypeCat.of
PUnit.fintype
DFunLike.coe
FintypeCat.instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.concreteCategoryFintype
Quiver.Hom.unop
finYoneda_obj 📖mathematicalCategoryTheory.Functor.obj
Opposite
FintypeCat
CategoryTheory.Category.opposite
FintypeCat.instCategory
CategoryTheory.types
finYoneda
instFinalOppositeDiscreteQuotientCarrierToTopTotallyDisconnectedSpaceCostructuredArrowFintypeCatProfiniteOpToProfiniteOpPtAsLimitConeFunctorOp 📖mathematicalCategoryTheory.Functor.Final
Opposite
DiscreteQuotient
TopCat.carrier
CompHausLike.toTop
TotallyDisconnectedSpace
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
DiscreteQuotient.instPartialOrder
CategoryTheory.CostructuredArrow
FintypeCat
FintypeCat.instCategory
Profinite
CompHausLike.category
CategoryTheory.Functor.op
FintypeCat.toProfinite
Opposite.op
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.comp
Profinite.fintypeDiagram
Profinite.asLimitCone
CategoryTheory.instCategoryCostructuredArrow
Profinite.Extend.functorOp
Profinite.Extend.functorOp_final
CategoryTheory.isCofiltered_of_directed_ge_nonempty
SemilatticeInf.instIsCodirectedOrder
Profinite.instEpiAppDiscreteQuotientCarrierToTopTotallyDisconnectedSpaceπAsLimitCone
instPreservesLimitsOfShapeOppositeProfiniteDiscreteCarrierToTopTotallyDisconnectedSpaceOfFinite 📖mathematicalCategoryTheory.Limits.PreservesLimitsOfShape
Opposite
Profinite
CategoryTheory.Category.opposite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
CategoryTheory.types
CategoryTheory.Discrete
CompHausLike.toTop
CategoryTheory.discreteCategory
Small.equiv_small
Countable.toSmall
Finite.to_countable
Finite.of_equiv
CategoryTheory.Limits.preservesLimitsOfShape_of_equiv
CategoryTheory.Limits.instPreservesLimitsOfShapeDiscreteOfFiniteOfPreservesFiniteProducts
isColimitLocallyConstantPresheafDiagram_desc_apply 📖mathematicalCategoryTheory.Limits.IsColimit.desc
Opposite
DiscreteQuotient
TopCat.carrier
CompHausLike.toTop
TotallyDisconnectedSpace
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
DiscreteQuotient.instPartialOrder
CategoryTheory.types
CategoryTheory.Functor.comp
Profinite
CompHausLike.category
CategoryTheory.Functor.op
Profinite.diagram
locallyConstantPresheaf
CategoryTheory.Functor.mapCocone
CategoryTheory.Limits.Cone.op
Profinite.asLimitCone
isColimitLocallyConstantPresheafDiagram
LocallyConstant.comap
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.obj
TopCat.Hom.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.InducedCategory.Hom.hom
CompHausLike
TopCat
TopCat.instCategory
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cocone.ι
Opposite.op
isColimitLocallyConstantPresheaf_desc_apply
CategoryTheory.isCofiltered_of_directed_ge_nonempty
SemilatticeInf.instIsCodirectedOrder
Profinite.instEpiAppDiscreteQuotientCarrierToTopTotallyDisconnectedSpaceπAsLimitCone
isColimitLocallyConstantPresheaf_desc_apply 📖mathematicalCategoryTheory.Epi
Profinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.comp
FintypeCat
FintypeCat.instCategory
FintypeCat.toProfinite
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
CategoryTheory.Limits.IsColimit.desc
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.op
locallyConstantPresheaf
CategoryTheory.Functor.mapCocone
CategoryTheory.Limits.Cone.op
isColimitLocallyConstantPresheaf
LocallyConstant.comap
CompHausLike.toTop
TopCat.Hom.hom
CategoryTheory.InducedCategory.Hom.hom
CompHausLike
TopCat
TopCat.instCategory
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cocone.ι
Opposite.op
CategoryTheory.Limits.IsColimit.fac
isoFinYonedaComponents_hom_apply 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
Profinite
CategoryTheory.Category.opposite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
Opposite.op
isoFinYonedaComponents
CategoryTheory.Functor.map
CompHausLike
Profinite.of
instTopologicalSpacePUnit
Finite.compactSpace
Finite.of_fintype
PUnit.fintype
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
MetricSpace.toEMetricSpace
instMetricSpacePUnit
TotallySeparatedSpace.totallyDisconnectedSpace
TotallySeparatedSpace.of_discrete
instDiscreteTopologyPUnit
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CompHausLike.const
Finite.compactSpace
Finite.of_fintype
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
TotallySeparatedSpace.totallyDisconnectedSpace
TotallySeparatedSpace.of_discrete
instDiscreteTopologyPUnit
isoFinYonedaComponents_inv_comp 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
Profinite
CategoryTheory.Category.opposite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
Opposite.op
isoFinYonedaComponents
CompHausLike.toTop
Profinite.of
instTopologicalSpacePUnit
Finite.compactSpace
Finite.of_fintype
PUnit.fintype
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
MetricSpace.toEMetricSpace
instMetricSpacePUnit
TotallySeparatedSpace.totallyDisconnectedSpace
TotallySeparatedSpace.of_discrete
instDiscreteTopologyPUnit
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
ContinuousMap
ContinuousMap.instFunLike
CompHausLike.concreteCategory
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Finite.compactSpace
Finite.of_fintype
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
TotallySeparatedSpace.totallyDisconnectedSpace
TotallySeparatedSpace.of_discrete
instDiscreteTopologyPUnit
CategoryTheory.injective_of_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.inv_hom_id_apply
isoFinYonedaComponents_hom_apply
isoFinYoneda_hom_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
FintypeCat
CategoryTheory.Category.opposite
FintypeCat.instCategory
CategoryTheory.types
CategoryTheory.Functor.comp
Profinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
CategoryTheory.Functor.op
FintypeCat.toProfinite
finYoneda
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
isoFinYoneda
CategoryTheory.Functor.obj
Opposite.op
Opposite.unop
isoFinYonedaComponents
isoFinYoneda_inv_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
FintypeCat
CategoryTheory.Category.opposite
FintypeCat.instCategory
CategoryTheory.types
finYoneda
CategoryTheory.Functor.comp
Profinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
CategoryTheory.Functor.op
FintypeCat.toProfinite
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
isoFinYoneda
CategoryTheory.Functor.obj
Opposite.op
Opposite.unop
isoFinYonedaComponents
isoLocallyConstantOfIsColimit_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.Functor
Opposite
Profinite
CategoryTheory.Category.opposite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
CategoryTheory.types
CategoryTheory.Functor.category
locallyConstantPresheaf
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
CategoryTheory.Functor.op
FintypeCat.toProfinite
Opposite.op
FintypeCat.of
PUnit.fintype
isoLocallyConstantOfIsColimit
CompHausLike.LocallyConstant.counitApp
Profinite.instHasPropTotallyDisconnectedSpaceCarrier
CompHausLike.toTop
instTopologicalSpaceSubtype
Subtype.totallyDisconnectedSpace
Profinite.instTotallyDisconnectedSpaceCarrierToTop
instTopologicalSpacePUnit
TotallySeparatedSpace.totallyDisconnectedSpace
TotallySeparatedSpace.of_discrete
instDiscreteTopologyPUnit
Profinite.instHasExplicitFiniteCoproductsTotallyDisconnectedSpaceCarrier
Profinite.instHasPropTotallyDisconnectedSpaceCarrier
Subtype.totallyDisconnectedSpace
Profinite.instTotallyDisconnectedSpaceCarrierToTop
TotallySeparatedSpace.totallyDisconnectedSpace
TotallySeparatedSpace.of_discrete
instDiscreteTopologyPUnit
Profinite.instHasExplicitFiniteCoproductsTotallyDisconnectedSpaceCarrier
Finite.compactSpace
Finite.of_fintype
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_comp_eq
CategoryTheory.NatTrans.ext'
CategoryTheory.Limits.colimit.hom_ext
CategoryTheory.NatTrans.naturality
CategoryTheory.types_ext
CompHausLike.LocallyConstant.presheaf_ext
CompHausLike.LocallyConstant.incl_of_counitAppApp
CategoryTheory.injective_of_mono
Subtype.val_injective
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
DiscreteTopology.toT2Space
CategoryTheory.FunctorToTypes.map_comp_apply
CategoryTheory.FunctorToTypes.map_id_apply
isoFinYonedaComponents_inv_comp
CategoryTheory.inv_hom_id_apply
Function.Fiber.map_eq_image
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.Types.hasColimitsOfShape
UnivLE.small
UnivLE.self
CategoryTheory.Limits.Types.hasColimit
lanPresheafExt_inv
lanPresheafNatIso_hom_app
CategoryTheory.Limits.colimit.map_desc
CategoryTheory.Limits.colimit.ι_desc
CategoryTheory.Limits.colimit.ι_desc_assoc
lanPresheafExt_hom 📖mathematicalCategoryTheory.NatTrans.app
Opposite
Profinite
CategoryTheory.Category.opposite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
CategoryTheory.types
lanPresheaf
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
lanPresheafExt
CategoryTheory.Limits.colimMap
CategoryTheory.CostructuredArrow
FintypeCat
FintypeCat.instCategory
CategoryTheory.Functor.op
FintypeCat.toProfinite
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Limits.Types.hasColimit
UnivLE.small
UnivLE.self
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Limits.Types.hasColimit
UnivLE.small
UnivLE.self
CategoryTheory.Functor.pointwiseLeftKanExtension_desc_app
CategoryTheory.Limits.colimit.hom_ext
CategoryTheory.Limits.colimit.ι_desc
CategoryTheory.Category.assoc
CategoryTheory.Limits.ι_colimMap
lanPresheafExt_inv 📖mathematicalCategoryTheory.NatTrans.app
Opposite
Profinite
CategoryTheory.Category.opposite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
CategoryTheory.types
lanPresheaf
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
lanPresheafExt
CategoryTheory.Limits.colimMap
CategoryTheory.CostructuredArrow
FintypeCat
FintypeCat.instCategory
CategoryTheory.Functor.op
FintypeCat.toProfinite
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Limits.Types.hasColimit
UnivLE.small
UnivLE.self
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Limits.Types.hasColimit
UnivLE.small
UnivLE.self
CategoryTheory.Functor.pointwiseLeftKanExtension_desc_app
CategoryTheory.Limits.colimit.hom_ext
CategoryTheory.Limits.colimit.ι_desc
CategoryTheory.Category.assoc
CategoryTheory.Limits.ι_colimMap
lanPresheafIso_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
Profinite
CategoryTheory.Category.opposite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
lanPresheaf
Opposite.op
lanPresheafIso
CategoryTheory.Limits.colimit.desc
CategoryTheory.CostructuredArrow
FintypeCat
FintypeCat.instCategory
CategoryTheory.Functor.op
FintypeCat.toProfinite
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow.proj
Profinite.Extend.cocone
CategoryTheory.Functor.Final.comp_hasColimit
instFinalOppositeDiscreteQuotientCarrierToTopTotallyDisconnectedSpaceCostructuredArrowFintypeCatProfiniteOpToProfiniteOpPtAsLimitConeFunctorOp
CategoryTheory.Functor.Final.colimit_pre_isIso
CategoryTheory.Limits.colimit.pre_desc
lanPresheafNatIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
Profinite
CategoryTheory.Category.opposite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
CategoryTheory.types
lanPresheaf
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
lanPresheafNatIso
CategoryTheory.Limits.colimit.desc
CategoryTheory.CostructuredArrow
FintypeCat
FintypeCat.instCategory
CategoryTheory.Functor.op
FintypeCat.toProfinite
Opposite.op
Opposite.unop
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow.proj
Profinite.Extend.cocone
lanPresheafIso_hom
locallyConstantIsoFinYoneda_hom_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
FintypeCat
CategoryTheory.Category.opposite
FintypeCat.instCategory
CategoryTheory.types
CategoryTheory.Functor.comp
Profinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
CategoryTheory.Functor.op
FintypeCat.toProfinite
locallyConstantPresheaf
CategoryTheory.Functor.obj
Opposite.op
FintypeCat.of
PUnit.fintype
finYoneda
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
locallyConstantIsoFinYoneda
DFunLike.coe
LocallyConstant
CompHausLike.toTop
Opposite.unop
LocallyConstant.instFunLike

LightCondensed

Definitions

NameCategoryTheorems
finYoneda 📖CompOp
4 mathmath: finYoneda_obj, isoFinYoneda_inv_app, finYoneda_map, isoFinYoneda_hom_app
fintypeCatAsCofan 📖CompOp
fintypeCatAsCofanIsColimit 📖CompOp
isColimitLocallyConstantPresheaf 📖CompOp
1 mathmath: isColimitLocallyConstantPresheaf_desc_apply
isColimitLocallyConstantPresheafDiagram 📖CompOp
1 mathmath: isColimitLocallyConstantPresheafDiagram_desc_apply
isoFinYoneda 📖CompOp
2 mathmath: isoFinYoneda_inv_app, isoFinYoneda_hom_app
isoFinYonedaComponents 📖CompOp
4 mathmath: isoFinYonedaComponents_hom_apply, isoFinYoneda_inv_app, isoFinYonedaComponents_inv_comp, isoFinYoneda_hom_app
isoLocallyConstantOfIsColimit 📖CompOp
1 mathmath: isoLocallyConstantOfIsColimit_inv
lanLightCondSet 📖CompOp
lanPresheaf 📖CompOp
4 mathmath: lanPresheafIso_hom, lanPresheafNatIso_hom_app, lanPresheafExt_inv, lanPresheafExt_hom
lanPresheafExt 📖CompOp
2 mathmath: lanPresheafExt_inv, lanPresheafExt_hom
lanPresheafIso 📖CompOp
1 mathmath: lanPresheafIso_hom
lanPresheafNatIso 📖CompOp
1 mathmath: lanPresheafNatIso_hom_app
locallyConstantIsoFinYoneda 📖CompOp
locallyConstantPresheaf 📖CompOp
3 mathmath: isColimitLocallyConstantPresheafDiagram_desc_apply, isoLocallyConstantOfIsColimit_inv, isColimitLocallyConstantPresheaf_desc_apply

Theorems

NameKindAssumesProvesValidatesDepends On
finYoneda_map 📖mathematicalCategoryTheory.Functor.map
Opposite
FintypeCat
CategoryTheory.Category.opposite
FintypeCat.instCategory
CategoryTheory.types
finYoneda
FintypeCat.carrier
Opposite.unop
CategoryTheory.Functor.obj
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.Functor.op
FintypeCat.toLightProfinite
Opposite.op
FintypeCat.of
PUnit.fintype
DFunLike.coe
FintypeCat.instFunLikeHomCarrier
CategoryTheory.ConcreteCategory.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
FintypeCat.concreteCategoryFintype
Quiver.Hom.unop
finYoneda_obj 📖mathematicalCategoryTheory.Functor.obj
Opposite
FintypeCat
CategoryTheory.Category.opposite
FintypeCat.instCategory
CategoryTheory.types
finYoneda
instFinalNatCostructuredArrowOppositeFintypeCatLightProfiniteOpToLightProfiniteOpPtAsLimitConeFunctorOp 📖mathematicalCategoryTheory.Functor.Final
Preorder.smallCategory
Nat.instPreorder
CategoryTheory.CostructuredArrow
Opposite
FintypeCat
CategoryTheory.Category.opposite
FintypeCat.instCategory
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.Functor.op
FintypeCat.toLightProfinite
Opposite.op
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.comp
LightProfinite.fintypeDiagram
LightProfinite.asLimitCone
CategoryTheory.instCategoryCostructuredArrow
LightProfinite.Extend.functorOp
LightProfinite.Extend.functorOp_final
LightProfinite.instEpiAppOppositeNatπAsLimitCone
instHasColimitsOfShapeCostructuredArrowOppositeFintypeCatLightProfiniteOpToLightProfiniteType 📖mathematicalCategoryTheory.Limits.HasColimitsOfShape
CategoryTheory.CostructuredArrow
Opposite
FintypeCat
CategoryTheory.Category.opposite
FintypeCat.instCategory
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.Functor.op
FintypeCat.toLightProfinite
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.types
CategoryTheory.Limits.hasColimitsOfShape_of_equivalence
CategoryTheory.CostructuredArrow.isEquivalence_pre
CategoryTheory.Functor.instIsEquivalenceOppositeOp
FintypeCat.Skeleton.instIsEquivalenceIncl
CategoryTheory.Limits.Types.hasColimitsOfShape
UnivLE.small
UnivLE.self
instPreservesLimitsOfShapeOppositeLightProfiniteDiscreteCarrier 📖mathematicalCategoryTheory.Limits.PreservesLimitsOfShape
Opposite
LightProfinite
CategoryTheory.Category.opposite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.types
CategoryTheory.Discrete
FintypeCat.carrier
CategoryTheory.discreteCategory
Small.equiv_small
Countable.toSmall
Finite.to_countable
Finite.of_fintype
CategoryTheory.Limits.preservesLimitsOfShape_of_equiv
CategoryTheory.Limits.instPreservesLimitsOfShapeDiscreteOfFiniteOfPreservesFiniteProducts
isColimitLocallyConstantPresheafDiagram_desc_apply 📖mathematicalCategoryTheory.Limits.IsColimit.desc
Preorder.smallCategory
Nat.instPreorder
CategoryTheory.types
CategoryTheory.Functor.comp
Opposite
LightProfinite
CategoryTheory.Category.opposite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.Functor.rightOp
LightProfinite.diagram
locallyConstantPresheaf
CategoryTheory.Functor.mapCocone
CategoryTheory.Limits.coconeRightOpOfCone
LightProfinite.asLimitCone
isColimitLocallyConstantPresheafDiagram
LocallyConstant.comap
CompHausLike.toTop
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.obj
Opposite.op
TopCat.Hom.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.InducedCategory.Hom.hom
CompHausLike
TopCat
TopCat.instCategory
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Limits.IsColimit.fac
isColimitLocallyConstantPresheaf_desc_apply 📖mathematicalCategoryTheory.Epi
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
Nat.instPreorder
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.comp
FintypeCat
FintypeCat.instCategory
FintypeCat.toLightProfinite
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
CategoryTheory.Limits.IsColimit.desc
CategoryTheory.types
CategoryTheory.Functor.op
locallyConstantPresheaf
CategoryTheory.Functor.mapCocone
CategoryTheory.Limits.Cone.op
isColimitLocallyConstantPresheaf
LocallyConstant.comap
CompHausLike.toTop
TopCat.Hom.hom
CategoryTheory.InducedCategory.Hom.hom
CompHausLike
TopCat
TopCat.instCategory
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cocone.ι
Opposite.op
CategoryTheory.Limits.IsColimit.fac
isoFinYonedaComponents_hom_apply 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
LightProfinite
CategoryTheory.Category.opposite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
Opposite.op
isoFinYonedaComponents
CategoryTheory.Functor.map
CompHausLike
LightProfinite.of
instTopologicalSpacePUnit
Finite.compactSpace
Finite.of_fintype
PUnit.fintype
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
MetricSpace.toEMetricSpace
instMetricSpacePUnit
TotallySeparatedSpace.totallyDisconnectedSpace
TotallySeparatedSpace.of_discrete
instDiscreteTopologyPUnit
TopologicalSpace.instSecondCountableTopologyOfLindelofSpaceOfPseudoMetrizableSpace
Countable.LindelofSpace
instCountablePUnit
PseudoEMetricSpace.pseudoMetrizableSpace
EMetricSpace.toPseudoEMetricSpace
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CompHausLike.const
Finite.compactSpace
Finite.of_fintype
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
TotallySeparatedSpace.totallyDisconnectedSpace
TotallySeparatedSpace.of_discrete
instDiscreteTopologyPUnit
TopologicalSpace.instSecondCountableTopologyOfLindelofSpaceOfPseudoMetrizableSpace
Countable.LindelofSpace
instCountablePUnit
PseudoEMetricSpace.pseudoMetrizableSpace
isoFinYonedaComponents_inv_comp 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
LightProfinite
CategoryTheory.Category.opposite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
Opposite.op
isoFinYonedaComponents
CompHausLike.toTop
LightProfinite.of
instTopologicalSpacePUnit
Finite.compactSpace
Finite.of_fintype
PUnit.fintype
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
MetricSpace.toEMetricSpace
instMetricSpacePUnit
TotallySeparatedSpace.totallyDisconnectedSpace
TotallySeparatedSpace.of_discrete
instDiscreteTopologyPUnit
TopologicalSpace.instSecondCountableTopologyOfLindelofSpaceOfPseudoMetrizableSpace
Countable.LindelofSpace
instCountablePUnit
PseudoEMetricSpace.pseudoMetrizableSpace
EMetricSpace.toPseudoEMetricSpace
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
ContinuousMap
ContinuousMap.instFunLike
CompHausLike.concreteCategory
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Finite.compactSpace
Finite.of_fintype
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
TotallySeparatedSpace.totallyDisconnectedSpace
TotallySeparatedSpace.of_discrete
instDiscreteTopologyPUnit
TopologicalSpace.instSecondCountableTopologyOfLindelofSpaceOfPseudoMetrizableSpace
Countable.LindelofSpace
instCountablePUnit
PseudoEMetricSpace.pseudoMetrizableSpace
CategoryTheory.injective_of_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.inv_hom_id_apply
isoFinYonedaComponents_hom_apply
isoFinYoneda_hom_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
FintypeCat
CategoryTheory.Category.opposite
FintypeCat.instCategory
CategoryTheory.types
CategoryTheory.Functor.comp
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.Functor.op
FintypeCat.toLightProfinite
finYoneda
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
isoFinYoneda
CategoryTheory.Functor.obj
Opposite.op
Opposite.unop
isoFinYonedaComponents
isoFinYoneda_inv_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
FintypeCat
CategoryTheory.Category.opposite
FintypeCat.instCategory
CategoryTheory.types
finYoneda
CategoryTheory.Functor.comp
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.Functor.op
FintypeCat.toLightProfinite
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
isoFinYoneda
CategoryTheory.Functor.obj
Opposite.op
Opposite.unop
isoFinYonedaComponents
isoLocallyConstantOfIsColimit_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.Functor
Opposite
LightProfinite
CategoryTheory.Category.opposite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.types
CategoryTheory.Functor.category
locallyConstantPresheaf
CategoryTheory.Functor.obj
FintypeCat
FintypeCat.instCategory
CategoryTheory.Functor.op
FintypeCat.toLightProfinite
Opposite.op
FintypeCat.of
PUnit.fintype
isoLocallyConstantOfIsColimit
CompHausLike.LocallyConstant.counitApp
LightCondSet.LocallyConstant.instHasPropAndTotallyDisconnectedSpaceCarrierSecondCountableTopologySubtypeToTop
LightProfinite.instHasPropAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
instTopologicalSpacePUnit
TotallySeparatedSpace.totallyDisconnectedSpace
TotallySeparatedSpace.of_discrete
instDiscreteTopologyPUnit
TopologicalSpace.instSecondCountableTopologyOfLindelofSpaceOfPseudoMetrizableSpace
Countable.LindelofSpace
instCountablePUnit
PseudoEMetricSpace.pseudoMetrizableSpace
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
instMetricSpacePUnit
LightProfinite.instHasExplicitFiniteCoproductsAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
LightCondSet.LocallyConstant.instHasPropAndTotallyDisconnectedSpaceCarrierSecondCountableTopologySubtypeToTop
LightProfinite.instHasPropAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
TotallySeparatedSpace.totallyDisconnectedSpace
TotallySeparatedSpace.of_discrete
instDiscreteTopologyPUnit
TopologicalSpace.instSecondCountableTopologyOfLindelofSpaceOfPseudoMetrizableSpace
Countable.LindelofSpace
instCountablePUnit
PseudoEMetricSpace.pseudoMetrizableSpace
LightProfinite.instHasExplicitFiniteCoproductsAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
Finite.compactSpace
Finite.of_fintype
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_comp_eq
CategoryTheory.NatTrans.ext'
CategoryTheory.Limits.colimit.hom_ext
CategoryTheory.NatTrans.naturality
CategoryTheory.types_ext
CompHausLike.LocallyConstant.presheaf_ext
CompHausLike.LocallyConstant.incl_of_counitAppApp
CategoryTheory.injective_of_mono
Subtype.val_injective
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
DiscreteTopology.toT2Space
CategoryTheory.FunctorToTypes.map_comp_apply
CategoryTheory.FunctorToTypes.map_id_apply
isoFinYonedaComponents_inv_comp
CategoryTheory.inv_hom_id_apply
Function.Fiber.map_eq_image
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
instHasColimitsOfShapeCostructuredArrowOppositeFintypeCatLightProfiniteOpToLightProfiniteType
lanPresheafExt_inv
lanPresheafNatIso_hom_app
CategoryTheory.Limits.colimit.map_desc
CategoryTheory.Limits.colimit.ι_desc
CategoryTheory.Limits.colimit.ι_desc_assoc
lanPresheafExt_hom 📖mathematicalCategoryTheory.NatTrans.app
Opposite
LightProfinite
CategoryTheory.Category.opposite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.types
lanPresheaf
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
lanPresheafExt
CategoryTheory.Limits.colimMap
CategoryTheory.CostructuredArrow
FintypeCat
FintypeCat.instCategory
CategoryTheory.Functor.op
FintypeCat.toLightProfinite
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
instHasColimitsOfShapeCostructuredArrowOppositeFintypeCatLightProfiniteOpToLightProfiniteType
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
instHasColimitsOfShapeCostructuredArrowOppositeFintypeCatLightProfiniteOpToLightProfiniteType
CategoryTheory.Functor.pointwiseLeftKanExtension_desc_app
CategoryTheory.Limits.colimit.hom_ext
CategoryTheory.Limits.colimit.ι_desc
CategoryTheory.Category.assoc
CategoryTheory.Limits.ι_colimMap
lanPresheafExt_inv 📖mathematicalCategoryTheory.NatTrans.app
Opposite
LightProfinite
CategoryTheory.Category.opposite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.types
lanPresheaf
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
lanPresheafExt
CategoryTheory.Limits.colimMap
CategoryTheory.CostructuredArrow
FintypeCat
FintypeCat.instCategory
CategoryTheory.Functor.op
FintypeCat.toLightProfinite
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow.proj
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
instHasColimitsOfShapeCostructuredArrowOppositeFintypeCatLightProfiniteOpToLightProfiniteType
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
instHasColimitsOfShapeCostructuredArrowOppositeFintypeCatLightProfiniteOpToLightProfiniteType
CategoryTheory.Functor.pointwiseLeftKanExtension_desc_app
CategoryTheory.Limits.colimit.hom_ext
CategoryTheory.Limits.colimit.ι_desc
CategoryTheory.Category.assoc
CategoryTheory.Limits.ι_colimMap
lanPresheafIso_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
LightProfinite
CategoryTheory.Category.opposite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
lanPresheaf
Opposite.op
lanPresheafIso
CategoryTheory.Limits.colimit.desc
CategoryTheory.CostructuredArrow
FintypeCat
FintypeCat.instCategory
CategoryTheory.Functor.op
FintypeCat.toLightProfinite
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow.proj
LightProfinite.Extend.cocone
CategoryTheory.Functor.Final.comp_hasColimit
instFinalNatCostructuredArrowOppositeFintypeCatLightProfiniteOpToLightProfiniteOpPtAsLimitConeFunctorOp
CategoryTheory.Functor.Final.colimit_pre_isIso
CategoryTheory.Limits.colimit.pre_desc
lanPresheafNatIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
LightProfinite
CategoryTheory.Category.opposite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.types
lanPresheaf
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
lanPresheafNatIso
CategoryTheory.Limits.colimit.desc
CategoryTheory.CostructuredArrow
FintypeCat
FintypeCat.instCategory
CategoryTheory.Functor.op
FintypeCat.toLightProfinite
Opposite.op
Opposite.unop
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Functor.comp
CategoryTheory.CostructuredArrow.proj
LightProfinite.Extend.cocone
lanPresheafIso_hom

---

← Back to Index