Documentation Verification Report

Module

📁 Source: Mathlib/Condensed/Discrete/Module.lean

Statistics

MetricCount
Definitionsfunctor, functorToPresheaves, adjunction, fullyFaithfulFunctor, functor, functorIsoDiscrete, functorIsoDiscreteAux₁, functorIsoDiscreteAux₂, functorIsoDiscreteComponents, functorToPresheaves, adjunction, fullyFaithfulFunctor, functor, functorIsoDiscrete, functorIsoDiscreteAux₁, functorIsoDiscreteAux₂, functorIsoDiscreteComponents, functorToPresheaves
18
TheoremsfunctorToPresheaves_map_app, functorToPresheaves_obj_map, functorToPresheaves_obj_obj_carrier, functorToPresheaves_obj_obj_isAddCommGroup, functorToPresheaves_obj_obj_isModule, functor_map_val, functor_obj_val, instFaithfulModuleCatCondensedDiscrete, instFaithfulModuleCatFunctor, instFaithfulModuleCatSheafCompHausCoherentTopologyConstantSheaf, instFaithfulSheafCompHausCoherentTopologyTypeConstantSheaf, instFullModuleCatCondensedDiscrete, instFullModuleCatFunctor, instFullModuleCatSheafCompHausCoherentTopologyConstantSheaf, instFullSheafCompHausCoherentTopologyTypeConstantSheaf, instIsIsoCondensedSetMapForgetAppCondensedModuleCatCounitDiscreteUnderlyingAdjObjFunctor, instFaithfulModuleCatFunctor, instFaithfulModuleCatLightCondensedDiscrete, instFaithfulModuleCatSheafLightProfiniteCoherentTopologyConstantSheaf, instFaithfulSheafLightProfiniteCoherentTopologyTypeConstantSheaf, instFullModuleCatFunctor, instFullModuleCatLightCondensedDiscrete, instFullModuleCatSheafLightProfiniteCoherentTopologyConstantSheaf, instFullSheafLightProfiniteCoherentTopologyTypeConstantSheaf, instHasSheafifyLightProfiniteCoherentTopologyModuleCat, instIsIsoLightCondSetMapForgetAppLightCondensedModuleCatCounitDiscreteUnderlyingAdjObjFunctor
26
Total44

CompHausLike.LocallyConstantModule

Definitions

NameCategoryTheorems
functor 📖CompOp
2 mathmath: functor_map_val, functor_obj_val
functorToPresheaves 📖CompOp
7 mathmath: functorToPresheaves_obj_obj_isModule, functorToPresheaves_map_app, functor_map_val, functor_obj_val, functorToPresheaves_obj_map, functorToPresheaves_obj_obj_carrier, functorToPresheaves_obj_obj_isAddCommGroup

Theorems

NameKindAssumesProvesValidatesDepends On
functorToPresheaves_map_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CompHausLike
CategoryTheory.Category.opposite
CompHausLike.category
ModuleCat
ModuleCat.moduleCategory
ModuleCat.of
LocallyConstant
TopCat.carrier
CompHausLike.toTop
ModuleCat.carrier
TopCat.str
LocallyConstant.instAddCommGroup
ModuleCat.isAddCommGroup
LocallyConstant.instModule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isModule
ModuleCat.ofHom
Opposite.unop
LocallyConstant.comapₗ
TopCat.Hom.hom
CategoryTheory.InducedCategory.Hom.hom
TopCat
TopCat.instCategory
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
functorToPresheaves
LocallyConstant.mapₗ
ModuleCat.Hom.hom
functorToPresheaves_obj_map 📖mathematicalCategoryTheory.Functor.map
Opposite
CompHausLike
CategoryTheory.Category.opposite
CompHausLike.category
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
functorToPresheaves
ModuleCat.ofHom
LocallyConstant
TopCat.carrier
CompHausLike.toTop
Opposite.unop
ModuleCat.carrier
TopCat.str
LocallyConstant.instAddCommGroup
ModuleCat.isAddCommGroup
LocallyConstant.instModule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isModule
LocallyConstant.comapₗ
TopCat.Hom.hom
CategoryTheory.InducedCategory.Hom.hom
TopCat
TopCat.instCategory
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
functorToPresheaves_obj_obj_carrier 📖mathematicalModuleCat.carrier
CategoryTheory.Functor.obj
Opposite
CompHausLike
CategoryTheory.Category.opposite
CompHausLike.category
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
functorToPresheaves
LocallyConstant
TopCat.carrier
CompHausLike.toTop
Opposite.unop
TopCat.str
functorToPresheaves_obj_obj_isAddCommGroup 📖mathematicalModuleCat.isAddCommGroup
CategoryTheory.Functor.obj
Opposite
CompHausLike
CategoryTheory.Category.opposite
CompHausLike.category
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
functorToPresheaves
LocallyConstant.instAddCommGroup
TopCat.carrier
CompHausLike.toTop
Opposite.unop
ModuleCat.carrier
TopCat.str
functorToPresheaves_obj_obj_isModule 📖mathematicalModuleCat.isModule
CategoryTheory.Functor.obj
Opposite
CompHausLike
CategoryTheory.Category.opposite
CompHausLike.category
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
functorToPresheaves
LocallyConstant.instModule
TopCat.carrier
CompHausLike.toTop
Opposite.unop
ModuleCat.carrier
TopCat.str
Ring.toSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
functor_map_val 📖mathematicalDFunLike.coe
CategoryTheory.ConcreteCategory.hom
CompHausLike
CompHausLike.category
ContinuousMap
TopCat.carrier
CompHausLike.toTop
TopCat.str
ContinuousMap.instFunLike
CompHausLike.concreteCategory
CategoryTheory.Sheaf.Hom.val
CategoryTheory.coherentTopology
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
functorToPresheaves
CategoryTheory.Functor.map
CategoryTheory.Sheaf
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
CompHausLike.preregular
CategoryTheory.Sheaf.instCategorySheaf
functor
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
CompHausLike.preregular
functor_obj_val 📖mathematicalDFunLike.coe
CategoryTheory.ConcreteCategory.hom
CompHausLike
CompHausLike.category
ContinuousMap
TopCat.carrier
CompHausLike.toTop
TopCat.str
ContinuousMap.instFunLike
CompHausLike.concreteCategory
CategoryTheory.Sheaf.val
CategoryTheory.coherentTopology
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.Functor.obj
CategoryTheory.Sheaf
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
CompHausLike.preregular
CategoryTheory.Sheaf.instCategorySheaf
functor
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.category
functorToPresheaves
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
CompHausLike.preregular

CondensedMod.LocallyConstant

Definitions

NameCategoryTheorems
adjunction 📖CompOp
1 mathmath: CondensedMod.isDiscrete_tfae
fullyFaithfulFunctor 📖CompOp
functor 📖CompOp
4 mathmath: CondensedMod.isDiscrete_tfae, instFullModuleCatFunctor, instIsIsoCondensedSetMapForgetAppCondensedModuleCatCounitDiscreteUnderlyingAdjObjFunctor, instFaithfulModuleCatFunctor
functorIsoDiscrete 📖CompOp
functorIsoDiscreteAux₁ 📖CompOp
functorIsoDiscreteAux₂ 📖CompOp
functorIsoDiscreteComponents 📖CompOp
functorToPresheaves 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
instFaithfulModuleCatCondensedDiscrete 📖mathematicalCategoryTheory.Functor.Faithful
ModuleCat
ModuleCat.moduleCategory
Condensed
instCategoryCondensed
Condensed.discrete
CategoryTheory.sheafToPresheaf_isRightAdjoint
CompHaus
CompHausLike.category
CategoryTheory.coherentTopology
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
CompHaus.instHasExplicitFiniteCoproductsTrue
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
CompHaus.instHasExplicitPullbacksTrue
CompHaus.instPreregular
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
CategoryTheory.Functor.instPreservesLimitsOfShapeOfIsRightAdjoint
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.types
CategoryTheory.forget
ModuleCat.instIsRightAdjointForgetLinearMapIdCarrier
ModuleCat.hasLimit
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.GrothendieckTopology.Cover.index
small_subtype
small_Pi
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
UnivLE.small
UnivLE.self
Set
Set.instMembership
CategoryTheory.Functor.sections
ModuleCat.hasColimitsOfShape
Opposite
CategoryTheory.GrothendieckTopology.Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
CategoryTheory.GrothendieckTopology.instPreorderCover
AddCommGrpCat.hasColimitsOfShape
Opposite.small
CategoryTheory.Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
ModuleCat.FilteredColimits.forget_preservesFilteredColimits
CategoryTheory.isFiltered_op_of_isCofiltered
CategoryTheory.isCofiltered_of_directed_ge_nonempty
SemilatticeInf.instIsCodirectedOrder
CategoryTheory.GrothendieckTopology.Cover.instSemilatticeInf
CategoryTheory.GrothendieckTopology.Cover.instInhabited
ModuleCat.instReflectsIsomorphismsForgetLinearMapIdCarrier
CategoryTheory.Functor.Faithful.of_iso
CategoryTheory.sheafToPresheaf_isRightAdjoint
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
CompHaus.instHasExplicitFiniteCoproductsTrue
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
CompHaus.instHasExplicitPullbacksTrue
CompHaus.instPreregular
CategoryTheory.Functor.instPreservesLimitsOfShapeOfIsRightAdjoint
ModuleCat.instIsRightAdjointForgetLinearMapIdCarrier
ModuleCat.hasLimit
small_subtype
small_Pi
UnivLE.small
UnivLE.self
ModuleCat.hasColimitsOfShape
AddCommGrpCat.hasColimitsOfShape
Opposite.small
CategoryTheory.Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
ModuleCat.FilteredColimits.forget_preservesFilteredColimits
CategoryTheory.isFiltered_op_of_isCofiltered
CategoryTheory.isCofiltered_of_directed_ge_nonempty
SemilatticeInf.instIsCodirectedOrder
ModuleCat.instReflectsIsomorphismsForgetLinearMapIdCarrier
instFaithfulModuleCatFunctor
instFaithfulModuleCatFunctor 📖mathematicalCategoryTheory.Functor.Faithful
ModuleCat
ModuleCat.moduleCategory
CondensedMod
instCategoryCondensed
functor
CategoryTheory.Functor.FullyFaithful.faithful
instFaithfulModuleCatSheafCompHausCoherentTopologyConstantSheaf 📖mathematicalCategoryTheory.Functor.Faithful
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.Sheaf
CompHaus
CompHausLike.category
CategoryTheory.coherentTopology
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
CompHaus.instHasExplicitFiniteCoproductsTrue
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
CompHaus.instHasExplicitPullbacksTrue
CompHaus.instPreregular
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.constantSheaf
CategoryTheory.sheafToPresheaf_isRightAdjoint
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
CategoryTheory.Functor.instPreservesLimitsOfShapeOfIsRightAdjoint
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.types
CategoryTheory.forget
ModuleCat.instIsRightAdjointForgetLinearMapIdCarrier
ModuleCat.hasLimit
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.GrothendieckTopology.Cover.index
small_subtype
small_Pi
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
UnivLE.small
univLE_of_max
UnivLE.self
Set
Set.instMembership
CategoryTheory.Functor.sections
ModuleCat.hasColimitsOfShape
Opposite
CategoryTheory.GrothendieckTopology.Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
CategoryTheory.GrothendieckTopology.instPreorderCover
AddCommGrpCat.hasColimitsOfShape
Opposite.small
CategoryTheory.Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
ModuleCat.FilteredColimits.forget_preservesFilteredColimits
CategoryTheory.isFiltered_op_of_isCofiltered
CategoryTheory.isCofiltered_of_directed_ge_nonempty
SemilatticeInf.instIsCodirectedOrder
CategoryTheory.GrothendieckTopology.Cover.instSemilatticeInf
CategoryTheory.GrothendieckTopology.Cover.instInhabited
ModuleCat.instReflectsIsomorphismsForgetLinearMapIdCarrier
CategoryTheory.sheafToPresheaf_isRightAdjoint
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
CompHaus.instHasExplicitFiniteCoproductsTrue
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
CompHaus.instHasExplicitPullbacksTrue
CompHaus.instPreregular
CategoryTheory.Functor.instPreservesLimitsOfShapeOfIsRightAdjoint
ModuleCat.instIsRightAdjointForgetLinearMapIdCarrier
ModuleCat.hasLimit
small_subtype
small_Pi
UnivLE.small
UnivLE.self
ModuleCat.hasColimitsOfShape
AddCommGrpCat.hasColimitsOfShape
Opposite.small
CategoryTheory.Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
ModuleCat.FilteredColimits.forget_preservesFilteredColimits
CategoryTheory.isFiltered_op_of_isCofiltered
CategoryTheory.isCofiltered_of_directed_ge_nonempty
SemilatticeInf.instIsCodirectedOrder
ModuleCat.instReflectsIsomorphismsForgetLinearMapIdCarrier
instFaithfulModuleCatCondensedDiscrete
instFaithfulSheafCompHausCoherentTopologyTypeConstantSheaf 📖mathematicalCategoryTheory.Functor.Faithful
CategoryTheory.types
CategoryTheory.Sheaf
CompHaus
CompHausLike.category
CategoryTheory.coherentTopology
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
CompHaus.instHasExplicitFiniteCoproductsTrue
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
CompHaus.instHasExplicitPullbacksTrue
CompHaus.instPreregular
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.constantSheaf
CategoryTheory.sheafToPresheaf_isRightAdjoint
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Types.instFunLike
CategoryTheory.Types.instConcreteCategory
CategoryTheory.Functor.corepresentable_preservesLimitsOfShape
CategoryTheory.forget
CategoryTheory.Types.instIsCorepresentableForgetTypeHom
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.Types.hasLimit
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.GrothendieckTopology.Cover.index
CategoryTheory.Limits.Types.hasColimitsOfShape
Opposite
CategoryTheory.GrothendieckTopology.Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
CategoryTheory.GrothendieckTopology.instPreorderCover
Opposite.small
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Types.instIsEquivalenceForgetTypeHom
CategoryTheory.instReflectsIsomorphismsForgetTypeHom
CategoryTheory.sheafToPresheaf_isRightAdjoint
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
CompHaus.instHasExplicitFiniteCoproductsTrue
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
CompHaus.instHasExplicitPullbacksTrue
CompHaus.instPreregular
CategoryTheory.Functor.corepresentable_preservesLimitsOfShape
CategoryTheory.Types.instIsCorepresentableForgetTypeHom
CategoryTheory.Limits.Types.hasLimit
UnivLE.small
UnivLE.self
CategoryTheory.Limits.Types.hasColimitsOfShape
Opposite.small
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Types.instIsEquivalenceForgetTypeHom
CategoryTheory.instReflectsIsomorphismsForgetTypeHom
CondensedSet.LocallyConstant.instFaithfulCondensedTypeDiscrete
instFullModuleCatCondensedDiscrete 📖mathematicalCategoryTheory.Functor.Full
ModuleCat
ModuleCat.moduleCategory
Condensed
instCategoryCondensed
Condensed.discrete
CategoryTheory.sheafToPresheaf_isRightAdjoint
CompHaus
CompHausLike.category
CategoryTheory.coherentTopology
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
CompHaus.instHasExplicitFiniteCoproductsTrue
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
CompHaus.instHasExplicitPullbacksTrue
CompHaus.instPreregular
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
CategoryTheory.Functor.instPreservesLimitsOfShapeOfIsRightAdjoint
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.types
CategoryTheory.forget
ModuleCat.instIsRightAdjointForgetLinearMapIdCarrier
ModuleCat.hasLimit
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.GrothendieckTopology.Cover.index
small_subtype
small_Pi
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
UnivLE.small
UnivLE.self
Set
Set.instMembership
CategoryTheory.Functor.sections
ModuleCat.hasColimitsOfShape
Opposite
CategoryTheory.GrothendieckTopology.Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
CategoryTheory.GrothendieckTopology.instPreorderCover
AddCommGrpCat.hasColimitsOfShape
Opposite.small
CategoryTheory.Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
ModuleCat.FilteredColimits.forget_preservesFilteredColimits
CategoryTheory.isFiltered_op_of_isCofiltered
CategoryTheory.isCofiltered_of_directed_ge_nonempty
SemilatticeInf.instIsCodirectedOrder
CategoryTheory.GrothendieckTopology.Cover.instSemilatticeInf
CategoryTheory.GrothendieckTopology.Cover.instInhabited
ModuleCat.instReflectsIsomorphismsForgetLinearMapIdCarrier
CategoryTheory.Functor.Full.of_iso
CategoryTheory.sheafToPresheaf_isRightAdjoint
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
CompHaus.instHasExplicitFiniteCoproductsTrue
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
CompHaus.instHasExplicitPullbacksTrue
CompHaus.instPreregular
CategoryTheory.Functor.instPreservesLimitsOfShapeOfIsRightAdjoint
ModuleCat.instIsRightAdjointForgetLinearMapIdCarrier
ModuleCat.hasLimit
small_subtype
small_Pi
UnivLE.small
UnivLE.self
ModuleCat.hasColimitsOfShape
AddCommGrpCat.hasColimitsOfShape
Opposite.small
CategoryTheory.Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
ModuleCat.FilteredColimits.forget_preservesFilteredColimits
CategoryTheory.isFiltered_op_of_isCofiltered
CategoryTheory.isCofiltered_of_directed_ge_nonempty
SemilatticeInf.instIsCodirectedOrder
ModuleCat.instReflectsIsomorphismsForgetLinearMapIdCarrier
instFullModuleCatFunctor
instFullModuleCatFunctor 📖mathematicalCategoryTheory.Functor.Full
ModuleCat
ModuleCat.moduleCategory
CondensedMod
instCategoryCondensed
functor
CategoryTheory.Functor.FullyFaithful.full
instFullModuleCatSheafCompHausCoherentTopologyConstantSheaf 📖mathematicalCategoryTheory.Functor.Full
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.Sheaf
CompHaus
CompHausLike.category
CategoryTheory.coherentTopology
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
CompHaus.instHasExplicitFiniteCoproductsTrue
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
CompHaus.instHasExplicitPullbacksTrue
CompHaus.instPreregular
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.constantSheaf
CategoryTheory.sheafToPresheaf_isRightAdjoint
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
CategoryTheory.Functor.instPreservesLimitsOfShapeOfIsRightAdjoint
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.types
CategoryTheory.forget
ModuleCat.instIsRightAdjointForgetLinearMapIdCarrier
ModuleCat.hasLimit
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.GrothendieckTopology.Cover.index
small_subtype
small_Pi
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
UnivLE.small
univLE_of_max
UnivLE.self
Set
Set.instMembership
CategoryTheory.Functor.sections
ModuleCat.hasColimitsOfShape
Opposite
CategoryTheory.GrothendieckTopology.Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
CategoryTheory.GrothendieckTopology.instPreorderCover
AddCommGrpCat.hasColimitsOfShape
Opposite.small
CategoryTheory.Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
ModuleCat.FilteredColimits.forget_preservesFilteredColimits
CategoryTheory.isFiltered_op_of_isCofiltered
CategoryTheory.isCofiltered_of_directed_ge_nonempty
SemilatticeInf.instIsCodirectedOrder
CategoryTheory.GrothendieckTopology.Cover.instSemilatticeInf
CategoryTheory.GrothendieckTopology.Cover.instInhabited
ModuleCat.instReflectsIsomorphismsForgetLinearMapIdCarrier
CategoryTheory.sheafToPresheaf_isRightAdjoint
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
CompHaus.instHasExplicitFiniteCoproductsTrue
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
CompHaus.instHasExplicitPullbacksTrue
CompHaus.instPreregular
CategoryTheory.Functor.instPreservesLimitsOfShapeOfIsRightAdjoint
ModuleCat.instIsRightAdjointForgetLinearMapIdCarrier
ModuleCat.hasLimit
small_subtype
small_Pi
UnivLE.small
UnivLE.self
ModuleCat.hasColimitsOfShape
AddCommGrpCat.hasColimitsOfShape
Opposite.small
CategoryTheory.Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
ModuleCat.FilteredColimits.forget_preservesFilteredColimits
CategoryTheory.isFiltered_op_of_isCofiltered
CategoryTheory.isCofiltered_of_directed_ge_nonempty
SemilatticeInf.instIsCodirectedOrder
ModuleCat.instReflectsIsomorphismsForgetLinearMapIdCarrier
instFullModuleCatCondensedDiscrete
instFullSheafCompHausCoherentTopologyTypeConstantSheaf 📖mathematicalCategoryTheory.Functor.Full
CategoryTheory.types
CategoryTheory.Sheaf
CompHaus
CompHausLike.category
CategoryTheory.coherentTopology
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
CompHaus.instHasExplicitFiniteCoproductsTrue
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
CompHaus.instHasExplicitPullbacksTrue
CompHaus.instPreregular
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.constantSheaf
CategoryTheory.sheafToPresheaf_isRightAdjoint
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Types.instFunLike
CategoryTheory.Types.instConcreteCategory
CategoryTheory.Functor.corepresentable_preservesLimitsOfShape
CategoryTheory.forget
CategoryTheory.Types.instIsCorepresentableForgetTypeHom
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.Limits.Types.hasLimit
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.GrothendieckTopology.Cover.index
CategoryTheory.Limits.Types.hasColimitsOfShape
Opposite
CategoryTheory.GrothendieckTopology.Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
CategoryTheory.GrothendieckTopology.instPreorderCover
Opposite.small
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Types.instIsEquivalenceForgetTypeHom
CategoryTheory.instReflectsIsomorphismsForgetTypeHom
CategoryTheory.sheafToPresheaf_isRightAdjoint
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
CompHaus.instHasExplicitFiniteCoproductsTrue
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
CompHaus.instHasExplicitPullbacksTrue
CompHaus.instPreregular
CategoryTheory.Functor.corepresentable_preservesLimitsOfShape
CategoryTheory.Types.instIsCorepresentableForgetTypeHom
CategoryTheory.Limits.Types.hasLimit
UnivLE.small
UnivLE.self
CategoryTheory.Limits.Types.hasColimitsOfShape
Opposite.small
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Types.instIsEquivalenceForgetTypeHom
CategoryTheory.instReflectsIsomorphismsForgetTypeHom
CondensedSet.LocallyConstant.instFullCondensedTypeDiscrete
instIsIsoCondensedSetMapForgetAppCondensedModuleCatCounitDiscreteUnderlyingAdjObjFunctor 📖mathematicalCategoryTheory.IsIso
CondensedSet
instCategoryCondensed
CategoryTheory.types
CategoryTheory.Functor.obj
CondensedMod
ModuleCat
ModuleCat.moduleCategory
Condensed.forget
Condensed
CategoryTheory.Functor.comp
Condensed.underlying
Condensed.discrete
CategoryTheory.sheafToPresheaf_isRightAdjoint
CompHaus
CompHausLike.category
CategoryTheory.coherentTopology
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
CompHaus.instHasExplicitFiniteCoproductsTrue
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
CompHaus.instHasExplicitPullbacksTrue
CompHaus.instPreregular
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
CategoryTheory.Functor.instPreservesLimitsOfShapeOfIsRightAdjoint
CategoryTheory.Limits.WalkingMulticospan
CategoryTheory.GrothendieckTopology.Cover.shape
CategoryTheory.Limits.WalkingMulticospan.instSmallCategory
CategoryTheory.forget
ModuleCat.instIsRightAdjointForgetLinearMapIdCarrier
ModuleCat.hasLimit
CategoryTheory.Limits.MulticospanIndex.multicospan
CategoryTheory.GrothendieckTopology.Cover.index
small_subtype
small_Pi
UnivLE.small
UnivLE.self
Set
Set.instMembership
CategoryTheory.Functor.sections
ModuleCat.hasColimitsOfShape
Opposite
CategoryTheory.GrothendieckTopology.Cover
CategoryTheory.Category.opposite
Preorder.smallCategory
CategoryTheory.GrothendieckTopology.instPreorderCover
AddCommGrpCat.hasColimitsOfShape
Opposite.small
CategoryTheory.Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
ModuleCat.FilteredColimits.forget_preservesFilteredColimits
CategoryTheory.isFiltered_op_of_isCofiltered
CategoryTheory.isCofiltered_of_directed_ge_nonempty
SemilatticeInf.instIsCodirectedOrder
CategoryTheory.GrothendieckTopology.Cover.instSemilatticeInf
CategoryTheory.GrothendieckTopology.Cover.instInhabited
ModuleCat.instReflectsIsomorphismsForgetLinearMapIdCarrier
functor
CategoryTheory.Functor.id
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.counit
Condensed.discreteUnderlyingAdj
CategoryTheory.sheafToPresheaf_isRightAdjoint
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
CompHaus.instHasExplicitFiniteCoproductsTrue
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
CompHaus.instHasExplicitPullbacksTrue
CompHaus.instPreregular
CategoryTheory.Functor.instPreservesLimitsOfShapeOfIsRightAdjoint
ModuleCat.instIsRightAdjointForgetLinearMapIdCarrier
ModuleCat.hasLimit
small_subtype
small_Pi
UnivLE.small
UnivLE.self
ModuleCat.hasColimitsOfShape
AddCommGrpCat.hasColimitsOfShape
Opposite.small
CategoryTheory.Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
ModuleCat.FilteredColimits.forget_preservesFilteredColimits
CategoryTheory.isFiltered_op_of_isCofiltered
CategoryTheory.isCofiltered_of_directed_ge_nonempty
SemilatticeInf.instIsCodirectedOrder
ModuleCat.instReflectsIsomorphismsForgetLinearMapIdCarrier
CategoryTheory.Functor.corepresentable_preservesLimitsOfShape
CategoryTheory.Types.instIsCorepresentableForgetTypeHom
CategoryTheory.Limits.Types.hasLimit
CategoryTheory.Limits.Types.hasColimitsOfShape
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Types.instIsEquivalenceForgetTypeHom
CategoryTheory.instReflectsIsomorphismsForgetTypeHom
CategoryTheory.GrothendieckTopology.instPreservesSheafificationForgetOfPreservesLimitsOfHasColimitsOfShapeOfPreservesColimitsOfShapeOppositeCoverOfHasLimitsOfShapeWalkingMulticospanOfReflectsIsomorphisms
ModuleCat.forget_preservesLimits
CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits
ModuleCat.hasLimits'
CategoryTheory.constantSheafAdj_counit_w
CategoryTheory.IsIso.comp_isIso'
CategoryTheory.NatIso.hom_app_isIso
univLE_of_max
CondensedSet.LocallyConstant.instFaithfulCondensedTypeDiscrete
CondensedSet.LocallyConstant.instFullCondensedTypeDiscrete
CategoryTheory.Sheaf.isConstant_iff_isIso_counit_app
CategoryTheory.reflectsIsomorphisms_of_full_and_faithful
CategoryTheory.Types.instFullForgetTypeHom
CategoryTheory.instFaithfulForget
CategoryTheory.Functor.essImage_eq_of_natIso
CategoryTheory.Functor.obj_mem_essImage

LightCondMod.LocallyConstant

Definitions

NameCategoryTheorems
adjunction 📖CompOp
1 mathmath: LightCondMod.isDiscrete_tfae
fullyFaithfulFunctor 📖CompOp
functor 📖CompOp
4 mathmath: LightCondMod.isDiscrete_tfae, instIsIsoLightCondSetMapForgetAppLightCondensedModuleCatCounitDiscreteUnderlyingAdjObjFunctor, instFaithfulModuleCatFunctor, instFullModuleCatFunctor
functorIsoDiscrete 📖CompOp
functorIsoDiscreteAux₁ 📖CompOp
functorIsoDiscreteAux₂ 📖CompOp
functorIsoDiscreteComponents 📖CompOp
functorToPresheaves 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
instFaithfulModuleCatFunctor 📖mathematicalCategoryTheory.Functor.Faithful
ModuleCat
ModuleCat.moduleCategory
LightCondMod
instCategoryLightCondensed
functor
CategoryTheory.Functor.FullyFaithful.faithful
instFaithfulModuleCatLightCondensedDiscrete 📖mathematicalCategoryTheory.Functor.Faithful
ModuleCat
ModuleCat.moduleCategory
LightCondensed
instCategoryLightCondensed
LightCondensed.discrete
instHasSheafifyLightProfiniteCoherentTopologyModuleCat
CategoryTheory.Functor.Faithful.of_iso
instHasSheafifyLightProfiniteCoherentTopologyModuleCat
instFaithfulModuleCatFunctor
instFaithfulModuleCatSheafLightProfiniteCoherentTopologyConstantSheaf 📖mathematicalCategoryTheory.Functor.Faithful
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.Sheaf
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.coherentTopology
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
LightProfinite.instHasExplicitFiniteCoproductsAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
LightProfinite.instHasExplicitPullbacksAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
LightProfinite.instPreregular
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.constantSheaf
CategoryTheory.instHasWeakSheafifyOfHasSheafify
instHasSheafifyLightProfiniteCoherentTopologyModuleCat
instHasSheafifyLightProfiniteCoherentTopologyModuleCat
instFaithfulModuleCatLightCondensedDiscrete
instFaithfulSheafLightProfiniteCoherentTopologyTypeConstantSheaf 📖mathematicalCategoryTheory.Functor.Faithful
CategoryTheory.types
CategoryTheory.Sheaf
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.coherentTopology
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
LightProfinite.instHasExplicitFiniteCoproductsAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
LightProfinite.instHasExplicitPullbacksAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
LightProfinite.instPreregular
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.constantSheaf
CategoryTheory.instHasWeakSheafifyOfHasSheafify
LightProfinite.hasSheafify_type
LightProfinite.hasSheafify_type
LightCondSet.LocallyConstant.instFaithfulLightCondensedTypeDiscrete
instFullModuleCatFunctor 📖mathematicalCategoryTheory.Functor.Full
ModuleCat
ModuleCat.moduleCategory
LightCondMod
instCategoryLightCondensed
functor
CategoryTheory.Functor.FullyFaithful.full
instFullModuleCatLightCondensedDiscrete 📖mathematicalCategoryTheory.Functor.Full
ModuleCat
ModuleCat.moduleCategory
LightCondensed
instCategoryLightCondensed
LightCondensed.discrete
instHasSheafifyLightProfiniteCoherentTopologyModuleCat
CategoryTheory.Functor.Full.of_iso
instHasSheafifyLightProfiniteCoherentTopologyModuleCat
instFullModuleCatFunctor
instFullModuleCatSheafLightProfiniteCoherentTopologyConstantSheaf 📖mathematicalCategoryTheory.Functor.Full
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.Sheaf
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.coherentTopology
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
LightProfinite.instHasExplicitFiniteCoproductsAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
LightProfinite.instHasExplicitPullbacksAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
LightProfinite.instPreregular
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.constantSheaf
CategoryTheory.instHasWeakSheafifyOfHasSheafify
instHasSheafifyLightProfiniteCoherentTopologyModuleCat
instHasSheafifyLightProfiniteCoherentTopologyModuleCat
instFullModuleCatLightCondensedDiscrete
instFullSheafLightProfiniteCoherentTopologyTypeConstantSheaf 📖mathematicalCategoryTheory.Functor.Full
CategoryTheory.types
CategoryTheory.Sheaf
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.coherentTopology
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
LightProfinite.instHasExplicitFiniteCoproductsAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
LightProfinite.instHasExplicitPullbacksAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
LightProfinite.instPreregular
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.constantSheaf
CategoryTheory.instHasWeakSheafifyOfHasSheafify
LightProfinite.hasSheafify_type
LightProfinite.hasSheafify_type
LightCondSet.LocallyConstant.instFullLightCondensedTypeDiscrete
instHasSheafifyLightProfiniteCoherentTopologyModuleCat 📖mathematicalCategoryTheory.HasSheafify
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.coherentTopology
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
LightProfinite.instHasExplicitFiniteCoproductsAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
LightProfinite.instHasExplicitPullbacksAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
LightProfinite.instPreregular
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
LightProfinite.instHasExplicitFiniteCoproductsAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
LightProfinite.instHasExplicitPullbacksAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
LightProfinite.instPreregular
LightProfinite.hasSheafify
ModuleCat.hasLimits'
ModuleCat.hasColimitsOfSize
AddCommGrpCat.hasColimitsOfSize
UnivLE.self
ModuleCat.FilteredColimits.forget_preservesFilteredColimits
ModuleCat.forget_preservesLimits
ModuleCat.instReflectsIsomorphismsForgetLinearMapIdCarrier
instIsIsoLightCondSetMapForgetAppLightCondensedModuleCatCounitDiscreteUnderlyingAdjObjFunctor 📖mathematicalCategoryTheory.IsIso
LightCondSet
instCategoryLightCondensed
CategoryTheory.types
CategoryTheory.Functor.obj
LightCondMod
ModuleCat
ModuleCat.moduleCategory
LightCondensed.forget
LightCondensed
CategoryTheory.Functor.comp
LightCondensed.underlying
LightCondensed.discrete
instHasSheafifyLightProfiniteCoherentTopologyModuleCat
functor
CategoryTheory.Functor.id
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.counit
LightCondensed.discreteUnderlyingAdj
instHasSheafifyLightProfiniteCoherentTopologyModuleCat
LightProfinite.instHasPropAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
CategoryTheory.instHasWeakSheafifyOfHasSheafify
LightProfinite.hasSheafify_type
CategoryTheory.GrothendieckTopology.instPreservesSheafification_1
instEssentiallySmallLightProfinite
CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits
ModuleCat.hasLimits'
CategoryTheory.Limits.Types.hasLimitsOfShape
UnivLE.small
UnivLE.self
CategoryTheory.GrothendieckTopology.instPreservesSheafificationForgetOfPreservesLimitsOfHasColimitsOfShapeOfPreservesColimitsOfShapeOppositeCoverOfHasLimitsOfShapeWalkingMulticospanOfReflectsIsomorphisms
CategoryTheory.Functor.locallyCoverDense_of_isCoverDense
CategoryTheory.Functor.IsLocallyFull.of_full
CategoryTheory.Equivalence.full_inverse
CategoryTheory.Equivalence.instIsCoverDenseOfIsEquivalence
CategoryTheory.Equivalence.isEquivalence_inverse
CategoryTheory.Functor.IsLocallyFaithful.of_faithful
CategoryTheory.Equivalence.faithful_inverse
ModuleCat.forget_preservesLimits
ModuleCat.hasColimitsOfShape
AddCommGrpCat.hasColimitsOfShape
Opposite.small
CategoryTheory.Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
ModuleCat.FilteredColimits.forget_preservesFilteredColimits
CategoryTheory.isFiltered_op_of_isCofiltered
CategoryTheory.isCofiltered_of_directed_ge_nonempty
SemilatticeInf.instIsCodirectedOrder
ModuleCat.instReflectsIsomorphismsForgetLinearMapIdCarrier
CategoryTheory.constantSheafAdj_counit_w
CategoryTheory.IsIso.comp_isIso'
CategoryTheory.NatIso.hom_app_isIso
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
LightProfinite.instHasExplicitFiniteCoproductsAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
LightProfinite.instHasExplicitPullbacksAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
LightProfinite.instPreregular
LightCondSet.LocallyConstant.instFaithfulLightCondensedTypeDiscrete
LightCondSet.LocallyConstant.instFullLightCondensedTypeDiscrete
CategoryTheory.Sheaf.isConstant_iff_isIso_counit_app
CategoryTheory.Functor.essImage_eq_of_natIso
CategoryTheory.Functor.obj_mem_essImage

---

← Back to Index