Documentation Verification Report

Explicit

📁 Source: Mathlib/Condensed/Explicit.lean

Statistics

MetricCount
DefinitionsofSheafCompHaus, ofSheafForgetCompHaus, ofSheafForgetProfinite, ofSheafForgetStonean, ofSheafProfinite, ofSheafStonean, ofSheafCompHaus, ofSheafProfinite, ofSheafStonean, ofSheafCompHaus, ofSheafProfinite, ofSheafStonean
12
TheoremsequalizerCondition, equalizerCondition_profinite, instPreservesFiniteProductsOppositeCompHausVal, instPreservesFiniteProductsOppositeProfiniteVal, instPreservesFiniteProductsOppositeStoneanVal
5
Total17

Condensed

Definitions

NameCategoryTheorems
ofSheafCompHaus 📖CompOp
ofSheafForgetCompHaus 📖CompOp
ofSheafForgetProfinite 📖CompOp
ofSheafForgetStonean 📖CompOp
ofSheafProfinite 📖CompOp
ofSheafStonean 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
equalizerCondition 📖mathematicalCategoryTheory.regularTopology.EqualizerCondition
CompHaus
CompHausLike.category
CategoryTheory.Sheaf.val
CategoryTheory.coherentTopology
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
CompHaus.instHasExplicitFiniteCoproductsTrue
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
CompHaus.instHasExplicitPullbacksTrue
CompHaus.instPreregular
CategoryTheory.Presheaf.isSheaf_iff_preservesFiniteProducts_and_equalizerCondition
CompHausLike.instHasLimitWalkingCospanCospan
CompHaus.instHasPropTrue
CategoryTheory.Sheaf.cond
equalizerCondition_profinite 📖mathematicalCategoryTheory.regularTopology.EqualizerCondition
Profinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
CategoryTheory.Sheaf.val
CategoryTheory.coherentTopology
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
Profinite.instHasExplicitFiniteCoproductsTotallyDisconnectedSpaceCarrier
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
Profinite.instHasExplicitPullbacksTotallyDisconnectedSpaceCarrier
Profinite.instPreregular
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
Profinite.instHasExplicitFiniteCoproductsTotallyDisconnectedSpaceCarrier
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
Profinite.instHasExplicitPullbacksTotallyDisconnectedSpaceCarrier
Profinite.instPreregular
CategoryTheory.Presheaf.isSheaf_iff_preservesFiniteProducts_and_equalizerCondition
CompHausLike.instHasLimitWalkingCospanCospan
Profinite.instHasPropTotallyDisconnectedSpaceCarrier
Subtype.totallyDisconnectedSpace
Prod.totallyDisconnectedSpace
Profinite.instTotallyDisconnectedSpaceCarrierToTop
CategoryTheory.Sheaf.cond
instPreservesFiniteProductsOppositeCompHausVal 📖mathematicalCategoryTheory.Limits.PreservesFiniteProducts
Opposite
CompHaus
CategoryTheory.Category.opposite
CompHausLike.category
CategoryTheory.Sheaf.val
CategoryTheory.coherentTopology
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
CompHaus.instHasExplicitFiniteCoproductsTrue
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
CompHaus.instHasExplicitPullbacksTrue
CompHaus.instPreregular
CategoryTheory.Presheaf.isSheaf_iff_preservesFiniteProducts_and_equalizerCondition
CompHausLike.instHasLimitWalkingCospanCospan
CompHaus.instHasPropTrue
CategoryTheory.Sheaf.cond
instPreservesFiniteProductsOppositeProfiniteVal 📖mathematicalCategoryTheory.Limits.PreservesFiniteProducts
Opposite
Profinite
CategoryTheory.Category.opposite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
CategoryTheory.Sheaf.val
CategoryTheory.coherentTopology
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
Profinite.instHasExplicitFiniteCoproductsTotallyDisconnectedSpaceCarrier
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
Profinite.instHasExplicitPullbacksTotallyDisconnectedSpaceCarrier
Profinite.instPreregular
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
Profinite.instHasExplicitFiniteCoproductsTotallyDisconnectedSpaceCarrier
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
Profinite.instHasExplicitPullbacksTotallyDisconnectedSpaceCarrier
Profinite.instPreregular
CategoryTheory.Presheaf.isSheaf_iff_preservesFiniteProducts_and_equalizerCondition
CompHausLike.instHasLimitWalkingCospanCospan
Profinite.instHasPropTotallyDisconnectedSpaceCarrier
Subtype.totallyDisconnectedSpace
Prod.totallyDisconnectedSpace
Profinite.instTotallyDisconnectedSpaceCarrierToTop
CategoryTheory.Sheaf.cond
instPreservesFiniteProductsOppositeStoneanVal 📖mathematicalCategoryTheory.Limits.PreservesFiniteProducts
Opposite
Stonean
CategoryTheory.Category.opposite
CompHausLike.category
ExtremallyDisconnected
TopCat.carrier
TopCat.str
CategoryTheory.Sheaf.val
CategoryTheory.coherentTopology
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
Stonean.instHasExplicitFiniteCoproductsExtremallyDisconnectedCarrier
Stonean.instHasExplicitPullbacksOfInclusionsExtremallyDisconnectedCarrier
Stonean.instPreregular
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
Stonean.instHasExplicitFiniteCoproductsExtremallyDisconnectedCarrier
Stonean.instHasExplicitPullbacksOfInclusionsExtremallyDisconnectedCarrier
Stonean.instPreregular
CategoryTheory.Presheaf.isSheaf_iff_preservesFiniteProducts_of_projective
Stonean.instProjective
CategoryTheory.Sheaf.cond

CondensedMod

Definitions

NameCategoryTheorems
ofSheafCompHaus 📖CompOp
ofSheafProfinite 📖CompOp
ofSheafStonean 📖CompOp

CondensedSet

Definitions

NameCategoryTheorems
ofSheafCompHaus 📖CompOp
ofSheafProfinite 📖CompOp
ofSheafStonean 📖CompOp

---

← Back to Index