📁 Source: Mathlib/Condensed/Light/Instances.lean
hasSheafify
hasSheafify_type
instWEqualsLocallyBijectiveCoherentTopology
CategoryTheory.HasSheafify
LightProfinite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
CategoryTheory.coherentTopology
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
instHasExplicitFiniteCoproductsAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
instHasExplicitPullbacksAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
instPreregular
CategoryTheory.hasSheafifyEssentiallySmallSite
instEssentiallySmallLightProfinite
CategoryTheory.instHasSheafifyOfPreservesLimitsForgetOfHasFiniteLimitsOfSmallOppositeCover
CategoryTheory.Functor.locallyCoverDense_of_isCoverDense
CategoryTheory.Functor.IsLocallyFull.of_full
CategoryTheory.Equivalence.full_inverse
CategoryTheory.Equivalence.instIsCoverDenseOfIsEquivalence
CategoryTheory.Equivalence.isEquivalence_inverse
CategoryTheory.Functor.IsLocallyFaithful.of_faithful
CategoryTheory.Equivalence.faithful_inverse
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
CategoryTheory.Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
CategoryTheory.isFiltered_op_of_isCofiltered
CategoryTheory.isCofiltered_of_directed_ge_nonempty
SemilatticeInf.instIsCodirectedOrder
CategoryTheory.Limits.PreservesLimitsOfSize.preservesLimitsOfShape
CategoryTheory.Limits.hasFiniteLimits_of_hasCountableLimits
CategoryTheory.Limits.hasCountableLimits_of_hasLimits
Opposite.small
UnivLE.small
UnivLE.self
CategoryTheory.types
CategoryTheory.instHasSheafifyType
CategoryTheory.GrothendieckTopology.WEqualsLocallyBijective
CategoryTheory.GrothendieckTopology.WEqualsLocallyBijective.ofEssentiallySmall
CategoryTheory.GrothendieckTopology.instWEqualsLocallyBijectiveOfHasWeakSheafifyOfHasSheafComposeOfPreservesSheafificationOfReflectsIsomorphismsForget
CategoryTheory.sheafToPresheaf_isRightAdjoint
CategoryTheory.hasSheafCompose_of_preservesMulticospan
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.GrothendieckTopology.instPreservesSheafificationForgetOfPreservesLimitsOfHasColimitsOfShapeOfPreservesColimitsOfShapeOppositeCoverOfHasLimitsOfShapeWalkingMulticospanOfReflectsIsomorphisms
---
← Back to Index