Documentation Verification Report

Monoidal

📁 Source: Mathlib/Condensed/Light/Monoidal.lean

Statistics

MetricCount
DefinitionsinstMonoidalCategoryLightCondMod, instMonoidalCategorySheafLightProfiniteCoherentTopologyModuleCat, instMonoidalClosedFunctorOppositeLightProfiniteModuleCat, instMonoidalClosedLightCondMod, instMonoidalClosedSheafLightProfiniteCoherentTopologyModuleCat, instMonoidalFunctorOppositeLightProfiniteModuleCatSheafCoherentTopologyPresheafToSheaf, instMonoidalLightCondSetLightCondModFree, instSymmetricCategoryLightCondMod
8
TheoremsinstIsMonoidalFunctorOppositeLightProfiniteModuleCatWCoherentTopology
1
Total9

LightCondensed

Definitions

NameCategoryTheorems
instMonoidalCategoryLightCondMod 📖CompOp
10 mathmath: free_internallyProjective_iff_tensor_condition, ihomPoints_apply, ihomPoints_symm_comp, free_lightProfinite_internallyProjective_iff_tensor_condition, internallyProjective_iff_tensor_condition, free_lightProfinite_internallyProjective_iff_tensor_condition', free_internallyProjective_iff_tensor_condition', ihomPoints_symm_apply, ihom_map_val_app, internallyProjective_iff_tensor_condition'
instMonoidalCategorySheafLightProfiniteCoherentTopologyModuleCat 📖CompOp
instMonoidalClosedFunctorOppositeLightProfiniteModuleCat 📖CompOp
instMonoidalClosedLightCondMod 📖CompOp
10 mathmath: free_internallyProjective_iff_tensor_condition, ihomPoints_apply, ihomPoints_symm_comp, free_lightProfinite_internallyProjective_iff_tensor_condition, internallyProjective_iff_tensor_condition, free_lightProfinite_internallyProjective_iff_tensor_condition', free_internallyProjective_iff_tensor_condition', ihomPoints_symm_apply, ihom_map_val_app, internallyProjective_iff_tensor_condition'
instMonoidalClosedSheafLightProfiniteCoherentTopologyModuleCat 📖CompOp
instMonoidalFunctorOppositeLightProfiniteModuleCatSheafCoherentTopologyPresheafToSheaf 📖CompOp
instMonoidalLightCondSetLightCondModFree 📖CompOp
instSymmetricCategoryLightCondMod 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
instIsMonoidalFunctorOppositeLightProfiniteModuleCatWCoherentTopology 📖mathematicalCategoryTheory.MorphismProperty.IsMonoidal
CategoryTheory.Functor
Opposite
LightProfinite
CategoryTheory.Category.opposite
CompHausLike.category
TotallyDisconnectedSpace
TopCat.carrier
TopCat.str
SecondCountableTopology
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
CategoryTheory.Functor.category
CategoryTheory.GrothendieckTopology.W
CategoryTheory.coherentTopology
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
LightProfinite.instHasExplicitFiniteCoproductsAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
LightProfinite.instHasExplicitPullbacksAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
LightProfinite.instPreregular
CategoryTheory.Monoidal.functorCategoryMonoidal
ModuleCat.monoidalCategory
CategoryTheory.GrothendieckTopology.W.transport_isMonoidal
CategoryTheory.instPrecoherentOfFinitaryPreExtensiveOfPreregular
CategoryTheory.FinitaryExtensive.toFinitaryPreExtensive
CompHausLike.instFinitaryExtensiveOfHasExplicitPullbacksOfInclusions
LightProfinite.instHasExplicitFiniteCoproductsAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
CompHausLike.instHasExplicitPullbacksOfInclusionsOfHasExplicitPullbacks
LightProfinite.instHasExplicitPullbacksAndTotallyDisconnectedSpaceCarrierSecondCountableTopology
LightProfinite.instPreregular
instEssentiallySmallLightProfinite
CategoryTheory.Functor.locallyCoverDense_of_isCoverDense
CategoryTheory.Functor.IsLocallyFull.of_full
CategoryTheory.Equivalence.full_inverse
CategoryTheory.coherentTopology.instIsCoverDense
CategoryTheory.Functor.instEffectivelyEnoughOfIsEquivalence
CategoryTheory.Equivalence.isEquivalence_inverse
CategoryTheory.Functor.IsLocallyFaithful.of_faithful
CategoryTheory.Equivalence.faithful_inverse
CategoryTheory.Functor.IsDenseSubsite.instIsContinuous
CategoryTheory.Functor.instIsDenseSubsiteInducedTopologyOfIsCoverDense
CategoryTheory.Functor.IsEquivalence.essSurj
CategoryTheory.Functor.IsDenseSubsite.instIsEquivalenceSheafSheafPushforwardContinuous
CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits
ModuleCat.hasLimits'
CategoryTheory.GrothendieckTopology.W.monoidal
ModuleCat.hasLimit
small_subtype
small_Pi
UnivLE.small
UnivLE.self

---

← Back to Index