Documentation Verification Report

Functor

πŸ“ Source: Mathlib/Control/Functor.lean

Statistics

MetricCount
DefinitionsAddConst, functor, mk, run, functor, instApplicativeComp, instInhabited, instPure, instSeq, map, mk, run, seq, functor, instInhabited, map, mk, mk', run, Liftp, Liftr, instInhabitedAddConst, mapConstRev, supp, Β«term_$>_Β»
25
TheoremslawfulFunctor, comp_map, ext, functor_comp_id, functor_id_comp, id_map, lawfulFunctor, map_mk, run_map, run_pure, run_seq, ext, lawfulFunctor, ext, map_comp_map, map_id, of_mem_supp
17
Total42

Functor

Definitions

NameCategoryTheorems
AddConst πŸ“–CompOp
2 mathmath: AddConst.lawfulFunctor, instLawfulApplicativeAddConst
Liftp πŸ“–MathDef
6 mathmath: QPF.liftp_iff', QPF.liftp_iff_of_isUniform, PFunctor.liftp_iff, QPF.has_good_supp_iff, PFunctor.liftp_iff', QPF.liftp_iff
Liftr πŸ“–MathDef
2 mathmath: QPF.liftr_iff, PFunctor.liftr_iff
instInhabitedAddConst πŸ“–CompOpβ€”
mapConstRev πŸ“–CompOpβ€”
supp πŸ“–CompOp
5 mathmath: PFunctor.supp_eq, QPF.supp_eq, QPF.supp_map, QPF.mem_supp, QPF.supp_eq_of_isUniform
Β«term_$>_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
ext πŸ“–β€”β€”β€”β€”β€”
map_comp_map πŸ“–β€”β€”β€”β€”β€”
map_id πŸ“–β€”β€”β€”β€”β€”
of_mem_supp πŸ“–β€”Liftp
Set
Set.instMembership
supp
β€”β€”β€”

Functor.AddConst

Definitions

NameCategoryTheorems
functor πŸ“–CompOp
1 mathmath: lawfulFunctor
mk πŸ“–CompOpβ€”
run πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
lawfulFunctor πŸ“–mathematicalβ€”Functor.AddConst
functor
β€”Functor.Const.lawfulFunctor

Functor.Comp

Definitions

NameCategoryTheorems
functor πŸ“–CompOp
9 mathmath: map_pure, seq_pure, functor_id_comp, pure_seq_eq_map, functor_comp_id, run_map, seq_assoc, map_mk, lawfulFunctor
instApplicativeComp πŸ“–CompOp
24 mathmath: LawfulBitraversable.comp_bitraverse, Bitraversable.tfst_comp_tfst, applicative_comp_id, LawfulTraversable.comp_traverse, applicative_id_comp, Bitraversable.tsnd_comp_tfst, Bitraversable.tfst_tsnd, Multiset.comp_traverse, Bitraversable.comp_tsnd, Equiv.comp_traverse, Traversable.comp_sequence, Sum.comp_traverse, instCommApplicative, Bitraversable.tsnd_comp_tsnd, Option.comp_traverse, LawfulBitraversable.bitraverse_comp, Bitraversable.tfst_comp_tsnd, List.comp_traverse, Bitraversable.tsnd_tfst, Traversable.traverse_comp, List.Vector.comp_traverse, Bitraversable.comp_tfst, instLawfulApplicativeComp, Tree.comp_traverse
instInhabited πŸ“–CompOpβ€”
instPure πŸ“–CompOp
4 mathmath: map_pure, seq_pure, pure_seq_eq_map, run_pure
instSeq πŸ“–CompOp
5 mathmath: run_seq, seq_pure, pure_seq_eq_map, seq_assoc, Comp.seq_mk
map πŸ“–CompOp
2 mathmath: id_map, comp_map
mk πŸ“–CompOpβ€”
run πŸ“–CompOp
3 mathmath: run_seq, run_pure, run_map
seq πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
comp_map πŸ“–mathematicalβ€”mapβ€”β€”
ext πŸ“–β€”runβ€”β€”β€”
functor_comp_id πŸ“–mathematicalβ€”functorβ€”Functor.ext
lawfulFunctor
functor_id_comp πŸ“–mathematicalβ€”functorβ€”Functor.ext
lawfulFunctor
id_map πŸ“–mathematicalβ€”mapβ€”β€”
lawfulFunctor πŸ“–mathematicalβ€”Functor.Comp
functor
β€”id_map
comp_map
map_mk πŸ“–mathematicalβ€”Functor.Comp
functor
β€”β€”
run_map πŸ“–mathematicalβ€”run
Functor.Comp
functor
β€”β€”
run_pure πŸ“–mathematicalβ€”run
Functor.Comp
instPure
β€”β€”
run_seq πŸ“–mathematicalβ€”run
Functor.Comp
instSeq
β€”β€”

Functor.Const

Definitions

NameCategoryTheorems
functor πŸ“–CompOp
1 mathmath: lawfulFunctor
instInhabited πŸ“–CompOpβ€”
map πŸ“–CompOpβ€”
mk πŸ“–CompOpβ€”
mk' πŸ“–CompOpβ€”
run πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
ext πŸ“–β€”runβ€”β€”β€”
lawfulFunctor πŸ“–mathematicalβ€”Functor.Const
functor
β€”β€”

---

← Back to Index