Documentation Verification Report

LawfulFix

📁 Source: Mathlib/Control/LawfulFix.lean

Statistics

MetricCount
DefinitionsLawfulFix, toFix, approxChain, lawfulFix, toUnitMono, hasFix, lawfulFix, lawfulFix', monotoneCurry, monotoneUncurry
10
Theoremsfix_eq, approx_le_fix, approx_mem_approxChain, approx_mono, approx_mono', exists_fix_le_approx, le_f_of_mem_approx, mem_iff, fix_eq_of_ωScottContinuous, fix_eq_ωSup, fix_eq_ωSup_of_ωScottContinuous, fix_le, toUnitMono_coe, ωScottContinuous_toUnitMono, monotoneCurry_coe, monotoneUncurry_coe, uncurry_curry_ωScottContinuous, ωScottContinuous_curry, ωScottContinuous_uncurry
19
Total29

LawfulFix

Definitions

NameCategoryTheorems
toFix 📖CompOp
1 mathmath: fix_eq

Theorems

NameKindAssumesProvesValidatesDepends On
fix_eq 📖mathematicalOmegaCompletePartialOrder.ωScottContinuousFix.fix
toFix

Part

Definitions

NameCategoryTheorems
lawfulFix 📖CompOp
toUnitMono 📖CompOp
2 mathmath: toUnitMono_coe, ωScottContinuous_toUnitMono

Theorems

NameKindAssumesProvesValidatesDepends On
fix_eq_of_ωScottContinuous 📖mathematicalOmegaCompletePartialOrder.ωScottContinuous
instOmegaCompletePartialOrderForall
Part
omegaCompletePartialOrder
fixOmegaCompletePartialOrder.ωScottContinuous.monotone
fix_eq_ωSup_of_ωScottContinuous
OmegaCompletePartialOrder.ωScottContinuous.map_ωSup
le_antisymm
OmegaCompletePartialOrder.ωSup_le_ωSup_of_le
Fix.le_f_of_mem_approx
le_refl
fix_eq_ωSup 📖mathematicalfix
DFunLike.coe
OrderHom
Pi.preorder
Part
PartialOrder.toPreorder
instPartialOrder
OrderHom.instFunLike
OmegaCompletePartialOrder.ωSup
instOmegaCompletePartialOrderForall
omegaCompletePartialOrder
Fix.approxChain
le_antisymm
Fix.exists_fix_le_approx
Fix.approx_mono'
OmegaCompletePartialOrder.le_ωSup_of_le
le_refl
OmegaCompletePartialOrder.ωSup_le
Fix.approx_le_fix
fix_eq_ωSup_of_ωScottContinuous 📖mathematicalOmegaCompletePartialOrder.ωScottContinuous
instOmegaCompletePartialOrderForall
Part
omegaCompletePartialOrder
fix
OmegaCompletePartialOrder.ωSup
Fix.approxChain
Pi.preorder
PartialOrder.toPreorder
instPartialOrder
OmegaCompletePartialOrder.ωScottContinuous.monotone
OmegaCompletePartialOrder.ωScottContinuous.monotone
fix_eq_ωSup
fix_le 📖mathematicalPi.hasLe
Part
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
DFunLike.coe
OrderHom
Pi.preorder
OrderHom.instFunLike
fixfix_eq_ωSup
OmegaCompletePartialOrder.ωSup_le
Fix.approx_mono
bot_le
OrderHom.monotone
toUnitMono_coe 📖mathematicalDFunLike.coe
OrderHom
Pi.preorder
Part
PartialOrder.toPreorder
instPartialOrder
OrderHom.instFunLike
toUnitMono
ωScottContinuous_toUnitMono 📖mathematicalOmegaCompletePartialOrder.ωScottContinuous
Part
omegaCompletePartialOrder
instOmegaCompletePartialOrderForall
DFunLike.coe
OrderHom
Pi.preorder
PartialOrder.toPreorder
instPartialOrder
OrderHom.instFunLike
toUnitMono
OmegaCompletePartialOrder.ωScottContinuous.monotone
OmegaCompletePartialOrder.ωScottContinuous.of_map_ωSup_of_orderHom
OmegaCompletePartialOrder.ωScottContinuous.monotone
OmegaCompletePartialOrder.ωScottContinuous.map_ωSup
OmegaCompletePartialOrder.Chain.map_comp

Part.Fix

Definitions

NameCategoryTheorems
approxChain 📖CompOp
3 mathmath: approx_mem_approxChain, Part.fix_eq_ωSup, Part.fix_eq_ωSup_of_ωScottContinuous

Theorems

NameKindAssumesProvesValidatesDepends On
approx_le_fix 📖mathematicalPi.hasLe
Part
Preorder.toLE
PartialOrder.toPreorder
Part.instPartialOrder
approx
DFunLike.coe
OrderHom
Pi.preorder
OrderHom.instFunLike
Part.fix
mem_iff
approx_mem_approxChain 📖mathematicalOmegaCompletePartialOrder.Chain
Pi.preorder
Part
PartialOrder.toPreorder
Part.instPartialOrder
OmegaCompletePartialOrder.Chain.instMembership
approxChain
approx
DFunLike.coe
OrderHom
OrderHom.instFunLike
Stream'.mem_of_get_eq
approx_mono 📖mathematicalPi.hasLe
Part
Preorder.toLE
PartialOrder.toPreorder
Part.instPartialOrder
approx
DFunLike.coe
OrderHom
Pi.preorder
OrderHom.instFunLike
le_rfl
le_trans
approx_mono'
approx_mono' 📖mathematicalPi.hasLe
Part
Preorder.toLE
PartialOrder.toPreorder
Part.instPartialOrder
approx
DFunLike.coe
OrderHom
Pi.preorder
OrderHom.instFunLike
bot_le
OrderHom.monotone
exists_fix_le_approx 📖mathematicalPart
Preorder.toLE
PartialOrder.toPreorder
Part.instPartialOrder
Part.fix
DFunLike.coe
OrderHom
Pi.preorder
OrderHom.instFunLike
approx
approx_le_fix
Part.mem_unique
mem_iff
le_f_of_mem_approx 📖mathematicalOmegaCompletePartialOrder.Chain
Pi.preorder
Part
PartialOrder.toPreorder
Part.instPartialOrder
OmegaCompletePartialOrder.Chain.instMembership
approxChain
Pi.hasLe
Preorder.toLE
DFunLike.coe
OrderHom
OrderHom.instFunLike
approx_mono'
mem_iff 📖mathematicalPart
Part.instMembership
Part.fix
DFunLike.coe
OrderHom
Pi.preorder
PartialOrder.toPreorder
Part.instPartialOrder
OrderHom.instFunLike
approx
Part.fix_def
Nat.find_spec
Part.dom_iff_mem
approx_mono'
approx_mono
Part.mem_unique
le_total
Part.fix_def'

Pi

Definitions

NameCategoryTheorems
hasFix 📖CompOp
lawfulFix 📖CompOp
lawfulFix' 📖CompOp
monotoneCurry 📖CompOp
3 mathmath: monotoneCurry_coe, ωScottContinuous_curry, uncurry_curry_ωScottContinuous
monotoneUncurry 📖CompOp
3 mathmath: ωScottContinuous_uncurry, monotoneUncurry_coe, uncurry_curry_ωScottContinuous

Theorems

NameKindAssumesProvesValidatesDepends On
monotoneCurry_coe 📖mathematicalDFunLike.coe
OrderHom
preorder
OrderHom.instFunLike
monotoneCurry
Sigma.curry
monotoneUncurry_coe 📖mathematicalDFunLike.coe
OrderHom
preorder
OrderHom.instFunLike
monotoneUncurry
Sigma.uncurry
uncurry_curry_ωScottContinuous 📖mathematicalOmegaCompletePartialOrder.ωScottContinuous
instOmegaCompletePartialOrderForall
DFunLike.coe
OrderHom
preorder
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
OrderHom.instFunLike
OrderHom.comp
monotoneUncurry
OmegaCompletePartialOrder.ωScottContinuous.monotone
monotoneCurry
OmegaCompletePartialOrder.ωScottContinuous.comp
ωScottContinuous_uncurry
ωScottContinuous_curry
ωScottContinuous_curry 📖mathematicalOmegaCompletePartialOrder.ωScottContinuous
instOmegaCompletePartialOrderForall
DFunLike.coe
OrderHom
preorder
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
OrderHom.instFunLike
monotoneCurry
OmegaCompletePartialOrder.ωScottContinuous.of_map_ωSup_of_orderHom
OmegaCompletePartialOrder.Chain.map_comp
ωScottContinuous_uncurry 📖mathematicalOmegaCompletePartialOrder.ωScottContinuous
instOmegaCompletePartialOrderForall
DFunLike.coe
OrderHom
preorder
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
OrderHom.instFunLike
monotoneUncurry
OmegaCompletePartialOrder.ωScottContinuous.of_map_ωSup_of_orderHom
OmegaCompletePartialOrder.Chain.map_comp

(root)

Definitions

NameCategoryTheorems
LawfulFix 📖CompData

---

← Back to Index