Documentation Verification Report

Filter

📁 Source: Mathlib/Data/Analysis/Filter.lean

Statistics

MetricCount
DefinitionsCFilter, f, inf, instCoeFunForall, ofEquiv, pt, toFilter, toRealizer, Realizer, F, bind, bot, cofinite, comap, iSup, inf, instInhabitedPrincipal, map, ofEq, ofEquiv, ofFilter, principal, prod, sup, top, σ, instInhabitedCFilter
27
Theoremscoe_mk, inf_le_left, inf_le_right, mem_toFilter_sets, ofEquiv_val, bot_F, bot_σ, eq, le_iff, map_F, map_σ, mem_sets, ne_bot_iff, ofEquiv_F, ofEquiv_σ, principal_F, principal_σ, tendsto_iff, top_F, top_σ
20
Total47

CFilter

Definitions

NameCategoryTheorems
f 📖CompOp
15 mathmath: Filter.Realizer.map_F, Filter.Realizer.ne_bot_iff, Ctop.Realizer.nhds_F, Filter.Realizer.mem_sets, Filter.Realizer.ofEquiv_F, mem_toFilter_sets, ofEquiv_val, Filter.Realizer.le_iff, Filter.Realizer.principal_F, inf_le_left, Filter.Realizer.bot_F, Filter.Realizer.top_F, inf_le_right, coe_mk, Filter.Realizer.tendsto_iff
inf 📖CompOp
2 mathmath: inf_le_left, inf_le_right
instCoeFunForall 📖CompOp
ofEquiv 📖CompOp
1 mathmath: ofEquiv_val
pt 📖CompOp
toFilter 📖CompOp
2 mathmath: Filter.Realizer.eq, mem_toFilter_sets
toRealizer 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
coe_mk 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
f
inf_le_left 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
f
inf
inf_le_right 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
f
inf
mem_toFilter_sets 📖mathematicalSet
Filter
Filter.instMembership
toFilter
Set.instHasSubset
f
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
ofEquiv_val 📖mathematicalf
ofEquiv
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm

Filter

Definitions

NameCategoryTheorems
Realizer 📖CompData

Filter.Realizer

Definitions

NameCategoryTheorems
F 📖CompOp
11 mathmath: eq, map_F, ne_bot_iff, Ctop.Realizer.nhds_F, mem_sets, ofEquiv_F, le_iff, principal_F, bot_F, top_F, tendsto_iff
bind 📖CompOp
bot 📖CompOp
2 mathmath: bot_σ, bot_F
cofinite 📖CompOp
comap 📖CompOp
iSup 📖CompOp
inf 📖CompOp
instInhabitedPrincipal 📖CompOp
map 📖CompOp
2 mathmath: map_F, map_σ
ofEq 📖CompOp
ofEquiv 📖CompOp
2 mathmath: ofEquiv_F, ofEquiv_σ
ofFilter 📖CompOp
principal 📖CompOp
2 mathmath: principal_σ, principal_F
prod 📖CompOp
sup 📖CompOp
top 📖CompOp
2 mathmath: top_F, top_σ
σ 📖CompOp
17 mathmath: bot_σ, eq, map_F, ne_bot_iff, Ctop.Realizer.nhds_σ, Ctop.Realizer.nhds_F, principal_σ, mem_sets, ofEquiv_F, le_iff, principal_F, map_σ, bot_F, top_F, ofEquiv_σ, top_σ, tendsto_iff

Theorems

NameKindAssumesProvesValidatesDepends On
bot_F 📖mathematicalCFilter.f
Set
σ
Bot.bot
Filter
Filter.instBot
bot
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
F
Set.instEmptyCollection
bot_σ 📖mathematicalσ
Bot.bot
Filter
Filter.instBot
bot
eq 📖mathematicalCFilter.toFilter
σ
F
le_iff 📖mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Set
Set.instLE
CFilter.f
σ
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
F
mem_sets
Set.Subset.refl
Set.Subset.trans
map_F 📖mathematicalCFilter.f
Set
σ
Filter.map
map
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
F
Set.image
map_σ 📖mathematicalσ
Filter.map
map
mem_sets 📖mathematicalSet
Filter
Filter.instMembership
Set.instHasSubset
CFilter.f
σ
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
F
ne_bot_iff 📖mathematicalSet.Nonempty
CFilter.f
Set
σ
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
F
not_iff_comm
le_bot_iff
le_iff
le_of_eq
ofEquiv_F 📖mathematicalCFilter.f
Set
σ
ofEquiv
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
F
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
ofEquiv_σ 📖mathematicalσ
ofEquiv
principal_F 📖mathematicalCFilter.f
Set
σ
Filter.principal
principal
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
F
principal_σ 📖mathematicalσ
Filter.principal
principal
tendsto_iff 📖mathematicalFilter.Tendsto
Set
Set.instMembership
CFilter.f
σ
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
F
le_iff
Set.image_subset_iff
top_F 📖mathematicalCFilter.f
Set
σ
Top.top
Filter
Filter.instTop
top
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
F
Set.univ
top_σ 📖mathematicalσ
Top.top
Filter
Filter.instTop
top

(root)

Definitions

NameCategoryTheorems
CFilter 📖CompData
instInhabitedCFilter 📖CompOp

---

← Back to Index