Topology
📁 Source: Mathlib/Data/Analysis/Topology.lean
Statistics
| Metric | Count |
|---|---|
DefinitionsRealizer, Ctop, Realizer, F, id, nhds, ofEquiv, σ, f, instCoeFunForallSet, inter, ofEquiv, toRealizer, toTopsp, top, Realizer, bas, sets, instInhabitedCtopSet, instInhabitedRealizer, instInhabitedRealizerEmptyCollectionSet | 21 |
Theoremseq, ext, ext', isClosed_iff, isOpen, isOpen_iff, is_basis, mem_interior_iff, mem_nhds, nhds_F, nhds_σ, ofEquiv_F, ofEquiv_σ, tendsto_nhds_iff, coe_mk, inter_mem, inter_sub, mem_nhds_toTopsp, ofEquiv_val, toTopsp_isTopologicalBasis, top_mem, to_locallyFinite, instNonemptyRealizerOfFinite, locallyFinite_iff_exists_realizer | 24 |
| Total | 45 |
Compact
Definitions
| Name | Category | Theorems |
|---|---|---|
Realizer 📖 | CompOp | — |
Ctop
Definitions
| Name | Category | Theorems |
|---|---|---|
Realizer 📖 | CompData | — |
f 📖 | CompOp | |
instCoeFunForallSet 📖 | CompOp | — |
inter 📖 | CompOp | |
ofEquiv 📖 | CompOp | |
toRealizer 📖 | CompOp | — |
toTopsp 📖 | CompOp | |
top 📖 | CompOp |
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
coe_mk 📖 | mathematical | SetSet.instMembershipSet.instHasSubsetSet.instInter | f | — | — |
inter_mem 📖 | mathematical | SetSet.instMembershipSet.instInterf | inter | — | — |
inter_sub 📖 | mathematical | SetSet.instMembershipSet.instInterf | Set.instHasSubsetinter | — | — |
mem_nhds_toTopsp 📖 | mathematical | — | SetFilterFilter.instMembershipnhdstoTopspSet.instMembershipfSet.instHasSubset | — | TopologicalSpace.IsTopologicalBasis.mem_nhds_ifftoTopsp_isTopologicalBasis |
ofEquiv_val 📖 | mathematical | — | fofEquivDFunLike.coeEquivEquivLike.toFunLikeEquiv.instEquivLikeEquiv.symm | — | — |
toTopsp_isTopologicalBasis 📖 | mathematical | — | TopologicalSpace.IsTopologicalBasistoTopspSet.rangeSetf | — | inter_meminter_subSet.eq_univ_iff_foralltop_mem |
top_mem 📖 | mathematical | — | SetSet.instMembershipftop | — | — |
Ctop.Realizer
Definitions
| Name | Category | Theorems |
|---|---|---|
F 📖 | CompOp | 10 mathmath:nhds_σ, is_basis, nhds_F, mem_interior_iff, mem_nhds, isOpen_iff, ofEquiv_F, eq, tendsto_nhds_iff, isOpen |
id 📖 | CompOp | — |
nhds 📖 | CompOp | |
ofEquiv 📖 | CompOp | |
σ 📖 | CompOp | 11 mathmath:nhds_σ, is_basis, nhds_F, ofEquiv_σ, mem_interior_iff, mem_nhds, isOpen_iff, ofEquiv_F, eq, tendsto_nhds_iff, isOpen |
Theorems
LocallyFinite
Definitions
| Name | Category | Theorems |
|---|---|---|
Realizer 📖 | CompData |
LocallyFinite.Realizer
Definitions
| Name | Category | Theorems |
|---|---|---|
bas 📖 | CompOp | — |
sets 📖 | CompOp | — |
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
to_locallyFinite 📖 | mathematical | — | LocallyFinite | — | Ctop.Realizer.mem_nhdsSet.Subset.rflSet.toFiniteFinite.of_fintype |
(root)
Definitions
| Name | Category | Theorems |
|---|---|---|
Ctop 📖 | CompData | — |
instInhabitedCtopSet 📖 | CompOp | — |
instInhabitedRealizer 📖 | CompOp | — |
instInhabitedRealizerEmptyCollectionSet 📖 | CompOp | — |
Theorems
---