Documentation Verification Report

Topology

📁 Source: Mathlib/Data/Analysis/Topology.lean

Statistics

MetricCount
DefinitionsRealizer, Ctop, Realizer, F, id, nhds, ofEquiv, σ, f, instCoeFunForallSet, inter, ofEquiv, toRealizer, toTopsp, top, Realizer, bas, sets, instInhabitedCtopSet, instInhabitedRealizer, instInhabitedRealizerEmptyCollectionSet
21
Theoremseq, ext, ext', isClosed_iff, isOpen, isOpen_iff, is_basis, mem_interior_iff, mem_nhds, nhds_F, nhds_σ, ofEquiv_F, ofEquiv_σ, tendsto_nhds_iff, coe_mk, inter_mem, inter_sub, mem_nhds_toTopsp, ofEquiv_val, toTopsp_isTopologicalBasis, top_mem, to_locallyFinite, instNonemptyRealizerOfFinite, locallyFinite_iff_exists_realizer
24
Total45

Compact

Definitions

NameCategoryTheorems
Realizer 📖CompOp

Ctop

Definitions

NameCategoryTheorems
Realizer 📖CompData
f 📖CompOp
14 mathmath: mem_nhds_toTopsp, coe_mk, Realizer.nhds_σ, Realizer.is_basis, Realizer.nhds_F, top_mem, Realizer.mem_interior_iff, Realizer.mem_nhds, Realizer.isOpen_iff, toTopsp_isTopologicalBasis, ofEquiv_val, Realizer.ofEquiv_F, Realizer.tendsto_nhds_iff, Realizer.isOpen
instCoeFunForallSet 📖CompOp
inter 📖CompOp
2 mathmath: inter_mem, inter_sub
ofEquiv 📖CompOp
1 mathmath: ofEquiv_val
toRealizer 📖CompOp
toTopsp 📖CompOp
5 mathmath: mem_nhds_toTopsp, Realizer.ext, Realizer.ext', toTopsp_isTopologicalBasis, Realizer.eq
top 📖CompOp
1 mathmath: top_mem

Theorems

NameKindAssumesProvesValidatesDepends On
coe_mk 📖mathematicalSet
Set.instMembership
Set.instHasSubset
Set.instInter
f
inter_mem 📖mathematicalSet
Set.instMembership
Set.instInter
f
inter
inter_sub 📖mathematicalSet
Set.instMembership
Set.instInter
f
Set.instHasSubset
inter
mem_nhds_toTopsp 📖mathematicalSet
Filter
Filter.instMembership
nhds
toTopsp
Set.instMembership
f
Set.instHasSubset
TopologicalSpace.IsTopologicalBasis.mem_nhds_iff
toTopsp_isTopologicalBasis
ofEquiv_val 📖mathematicalf
ofEquiv
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
toTopsp_isTopologicalBasis 📖mathematicalTopologicalSpace.IsTopologicalBasis
toTopsp
Set.range
Set
f
inter_mem
inter_sub
Set.eq_univ_iff_forall
top_mem
top_mem 📖mathematicalSet
Set.instMembership
f
top

Ctop.Realizer

Definitions

NameCategoryTheorems
F 📖CompOp
10 mathmath: nhds_σ, is_basis, nhds_F, mem_interior_iff, mem_nhds, isOpen_iff, ofEquiv_F, eq, tendsto_nhds_iff, isOpen
id 📖CompOp
nhds 📖CompOp
2 mathmath: nhds_σ, nhds_F
ofEquiv 📖CompOp
2 mathmath: ofEquiv_σ, ofEquiv_F
σ 📖CompOp
11 mathmath: nhds_σ, is_basis, nhds_F, ofEquiv_σ, mem_interior_iff, mem_nhds, isOpen_iff, ofEquiv_F, eq, tendsto_nhds_iff, isOpen

Theorems

NameKindAssumesProvesValidatesDepends On
eq 📖mathematicalCtop.toTopsp
σ
F
ext 📖mathematicalIsOpen
Ctop.f
Set
Set.instMembership
Set.instHasSubset
Ctop.toTopspext'
mem_nhds_iff
ext' 📖mathematicalSet
Filter
Filter.instMembership
nhds
Set.instMembership
Ctop.f
Set.instHasSubset
Ctop.toTopspTopologicalSpace.ext_nhds
Filter.ext
Ctop.mem_nhds_toTopsp
isClosed_iff 📖mathematicalIsClosed
Set
Set.instMembership
isOpen_compl_iff
isOpen_iff
not_imp_comm
isOpen 📖mathematicalIsOpen
Ctop.f
σ
F
isOpen_iff_nhds
mem_nhds
Set.Subset.refl
isOpen_iff 📖mathematicalIsOpen
Set
Set.instMembership
Ctop.f
σ
F
Set.instHasSubset
isOpen_iff_mem_nhds
mem_nhds
is_basis 📖mathematicalTopologicalSpace.IsTopologicalBasis
Set.range
Set
σ
Ctop.f
F
Ctop.toTopsp_isTopologicalBasis
eq
mem_interior_iff 📖mathematicalSet
Set.instMembership
interior
Ctop.f
σ
F
Set.instHasSubset
mem_interior_iff_mem_nhds
mem_nhds
mem_nhds 📖mathematicalSet
Filter
Filter.instMembership
nhds
Set.instMembership
Ctop.f
σ
F
Set.instHasSubset
Ctop.mem_nhds_toTopsp
eq
nhds_F 📖mathematicalCFilter.f
Set
Filter.Realizer.σ
nhds
nhds
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Filter.Realizer.F
Ctop.f
σ
F
Set.instMembership
nhds_σ 📖mathematicalFilter.Realizer.σ
nhds
nhds
σ
Set
Set.instMembership
Ctop.f
F
ofEquiv_F 📖mathematicalCtop.f
σ
ofEquiv
F
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
Ctop.ofEquiv_val
ofEquiv_σ 📖mathematicalσ
ofEquiv
tendsto_nhds_iff 📖mathematicalFilter.Tendsto
nhds
Set
Set.instMembership
Ctop.f
σ
F
Filter.Realizer.tendsto_iff

LocallyFinite

Definitions

NameCategoryTheorems
Realizer 📖CompData
2 mathmath: locallyFinite_iff_exists_realizer, instNonemptyRealizerOfFinite

LocallyFinite.Realizer

Definitions

NameCategoryTheorems
bas 📖CompOp
sets 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
to_locallyFinite 📖mathematicalLocallyFiniteCtop.Realizer.mem_nhds
Set.Subset.rfl
Set.toFinite
Finite.of_fintype

(root)

Definitions

NameCategoryTheorems
Ctop 📖CompData
instInhabitedCtopSet 📖CompOp
instInhabitedRealizer 📖CompOp
instInhabitedRealizerEmptyCollectionSet 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
instNonemptyRealizerOfFinite 📖mathematicalLocallyFinite.RealizerlocallyFinite_iff_exists_realizer
locallyFinite_of_finite
locallyFinite_iff_exists_realizer 📖mathematicalLocallyFinite
LocallyFinite.Realizer
Classical.axiom_of_choice
Ctop.Realizer.mem_nhds
Set.Finite.subset
Set.Nonempty.mono
Set.inter_subset_inter_right
LocallyFinite.Realizer.to_locallyFinite

---

← Back to Index