Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Data/Countable/Basic.lean

Statistics

MetricCount
Definitions0
TheoremsinstCountable, countable, uncountable, instCountable, instUncountable, countable, uncountable, uncountable_inl, uncountable_inr, instCountable, instUncountable, instCountable, instUncountable, countable_iff_nonempty_embedding, countable_left_of_prod_of_nonempty, countable_prod_swap, countable_right_of_prod_of_nonempty, instCountableForallOfFinite, instCountableInt, instCountablePProd, instCountablePSigma, instCountablePSum, instCountableProd, instCountableSigma, instCountableSum, instUncountableProdOfNonempty, instUncountableProdOfNonempty_1, instUncountableSigmaOfNonempty, nonempty_embedding_nat, uncountable_iff_isEmpty_embedding, untopD_coe_enat
31
Total31

ENat

Theorems

NameKindAssumesProvesValidatesDepends On
instCountable πŸ“–mathematicalβ€”Countable
ENat
β€”Option.instCountable
instCountableNat

Function.Embedding

Theorems

NameKindAssumesProvesValidatesDepends On
countable πŸ“–mathematicalβ€”Countableβ€”Function.Injective.countable
injective
uncountable πŸ“–mathematicalβ€”Uncountableβ€”Function.Injective.uncountable
injective

Option

Theorems

NameKindAssumesProvesValidatesDepends On
instCountable πŸ“–mathematicalβ€”Countableβ€”Countable.of_equiv
instCountableSum
instCountablePUnit
instUncountable πŸ“–mathematicalβ€”Uncountableβ€”Function.Injective.uncountable

SetCoe

Theorems

NameKindAssumesProvesValidatesDepends On
countable πŸ“–mathematicalβ€”Countable
Set.Elem
β€”Subtype.countable

Sigma

Theorems

NameKindAssumesProvesValidatesDepends On
uncountable πŸ“–mathematicalβ€”Uncountableβ€”Function.Injective.uncountable
sigma_mk_injective

Sum

Theorems

NameKindAssumesProvesValidatesDepends On
uncountable_inl πŸ“–mathematicalβ€”Uncountableβ€”Function.Injective.uncountable
inl_injective
uncountable_inr πŸ“–mathematicalβ€”Uncountableβ€”Function.Injective.uncountable
inr_injective

WithBot

Theorems

NameKindAssumesProvesValidatesDepends On
instCountable πŸ“–mathematicalβ€”Countable
WithBot
β€”Option.instCountable
instUncountable πŸ“–mathematicalβ€”Uncountable
WithBot
β€”Option.instUncountable

WithTop

Theorems

NameKindAssumesProvesValidatesDepends On
instCountable πŸ“–mathematicalβ€”Countable
WithTop
β€”Option.instCountable
instUncountable πŸ“–mathematicalβ€”Uncountable
WithTop
β€”Option.instUncountable

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
countable_iff_nonempty_embedding πŸ“–mathematicalβ€”Countable
Function.Embedding
β€”Function.Embedding.inj'
countable_left_of_prod_of_nonempty πŸ“–mathematicalβ€”Countableβ€”Mathlib.Tactic.Contrapose.contrapose₁
instUncountableProdOfNonempty
countable_prod_swap πŸ“–mathematicalβ€”Countableβ€”Countable.of_equiv
countable_right_of_prod_of_nonempty πŸ“–mathematicalβ€”Countableβ€”Mathlib.Tactic.Contrapose.contrapose₁
instUncountableProdOfNonempty_1
instCountableForallOfFinite πŸ“–β€”Countableβ€”β€”Subsingleton.to_countable
Unique.instSubsingleton
Fin.isEmpty'
Countable.of_equiv
instCountableProd
instCountableNat
Finite.exists_equiv_fin
nonempty_embedding_nat
Function.Embedding.countable
instCountableInt πŸ“–mathematicalβ€”Countableβ€”Countable.of_equiv
instCountableNat
instCountablePProd πŸ“–mathematicalβ€”Countableβ€”Countable.of_equiv
instCountableProd
instCountablePLift
instCountablePSigma πŸ“–β€”Countableβ€”β€”Countable.of_equiv
instCountableSigma
instCountablePLift
instCountablePSum πŸ“–mathematicalβ€”Countableβ€”Countable.of_equiv
instCountableSum
instCountablePLift
instCountableProd πŸ“–mathematicalβ€”Countableβ€”Countable.exists_injective_nat
Function.Injective.countable
instCountableNat
Equiv.injective
Function.Injective.prodMap
instCountableSigma πŸ“–β€”Countableβ€”β€”Countable.exists_injective_nat
Function.Injective.countable
instCountableProd
instCountableNat
Equiv.injective
Function.Injective.sigma_map
instCountableSum πŸ“–mathematicalβ€”Countableβ€”Countable.exists_injective_nat
Function.Injective.countable
instCountableNat
Equiv.injective
Function.Injective.sumMap
instUncountableProdOfNonempty πŸ“–mathematicalβ€”Uncountableβ€”Function.Injective.uncountable
Prod.mk_left_injective
instUncountableProdOfNonempty_1 πŸ“–mathematicalβ€”Uncountableβ€”Function.Injective.uncountable
Prod.mk_right_injective
instUncountableSigmaOfNonempty πŸ“–β€”Uncountableβ€”β€”Sigma.uncountable
nonempty_embedding_nat πŸ“–mathematicalβ€”Function.Embeddingβ€”countable_iff_nonempty_embedding
uncountable_iff_isEmpty_embedding πŸ“–mathematicalβ€”Uncountable
IsEmpty
Function.Embedding
β€”not_countable_iff
countable_iff_nonempty_embedding
not_nonempty_iff
untopD_coe_enat πŸ“–mathematicalβ€”WithTop.untopD
ENat
ENat.instNatCast
β€”β€”

---

← Back to Index