Documentation Verification Report

Defs

πŸ“ Source: Mathlib/Data/DFinsupp/Defs.lean

Statistics

MetricCount
DefinitionsaddCommGroup, addCommMonoid, addMonoidβ‚‚, addZeroClass, addZeroClassβ‚‚, coeFnAddMonoidHom, comapDomain, comapDomain', decidableZero, equivCongrLeft, equivFunOnFintype, equivProdDFinsupp, erase, eraseAddHom, extendWith, filter, filterAddMonoidHom, hasAddβ‚‚, hasIntScalar, hasNatScalar, instAdd, instAddGroup, instAddMonoid, instDFunLike, instDecidableEq, instInhabited, instNeg, instSub, instZero, mapRange, addEquiv, addMonoidHom, mk, mkAddGroupHom, piecewise, sigmaFinsetFunEquiv, single, singleAddHom, subtypeDomain, subtypeDomainAddMonoidHom, subtypeSupportEqEquiv, support, support', toFun, unique, uniqueOfIsEmpty, update, zipWith, Β«termΞ β‚€_,_Β»
49
Theoremsadd_apply, coeFnAddMonoidHom_apply, coe_add, coe_mk', coe_neg, coe_nsmul, coe_piecewise, coe_sub, coe_update, coe_zero, coe_zsmul, comapDomain'_add, comapDomain'_apply, comapDomain'_single, comapDomain'_zero, comapDomain_add, comapDomain_apply, comapDomain_single, comapDomain_zero, eq_mk_support, equivCongrLeft_apply, equivFunOnFintype_apply, equivFunOnFintype_single, equivFunOnFintype_symm_coe, equivFunOnFintype_symm_single, equivProdDFinsupp_add, equivProdDFinsupp_apply, equivProdDFinsupp_symm_apply, eraseAddHom_apply, erase_add, erase_add_single, erase_apply, erase_def, erase_eq_sub_single, erase_ne, erase_neg, erase_same, erase_single, erase_single_ne, erase_single_same, erase_sub, erase_zero, ext, ext_iff, extendWith_none, extendWith_single_zero, extendWith_some, extendWith_zero, filterAddMonoidHom_apply, filter_add, filter_apply, filter_apply_neg, filter_apply_pos, filter_def, filter_ne_eq_erase, filter_ne_eq_erase', filter_neg, filter_pos_add_filter_neg, filter_single, filter_single_neg, filter_single_pos, filter_sub, filter_zero, finite_support, induction, inductionβ‚‚, instIsCancelAdd, instIsLeftCancelAdd, instIsRightCancelAdd, addEquiv_apply, addEquiv_refl, addEquiv_symm, addEquiv_trans, addMonoidHom_apply, addMonoidHom_comp, addMonoidHom_id, mapRange_add, mapRange_apply, mapRange_comp, mapRange_def, mapRange_id, mapRange_injective, mapRange_single, mapRange_surjective, mapRange_zero, mem_support_iff, mem_support_toFun, mk_add, mk_apply, mk_injective, mk_neg, mk_of_mem, mk_of_notMem, mk_sub, mk_zero, ne_iff, neg_apply, notMem_support_iff, nsmul_apply, piecewise_apply, piecewise_single_erase, sigmaFinsetFunEquiv_apply_fst, sigmaFinsetFunEquiv_apply_snd_coe, singleAddHom_apply, single_add, single_add_erase, single_apply, single_eq_of_ne, single_eq_of_sigma_eq, single_eq_pi_single, single_eq_same, single_eq_single_iff, single_eq_zero, single_injective, single_left_injective, single_ne_zero, single_neg, single_sub, single_zero, sub_apply, subtypeDomainAddMonoidHom_apply, subtypeDomain_add, subtypeDomain_apply, subtypeDomain_def, subtypeDomain_neg, subtypeDomain_sub, subtypeDomain_zero, subtypeSupportEqEquiv_apply_coe, subtypeSupportEqEquiv_symm_apply_coe, support_add, support_eq_empty, support_erase, support_filter, support_mapRange, support_mk'_subset, support_mk_subset, support_neg, support_single_ne_zero, support_single_subset, support_subset_iff, support_subtypeDomain, support_update, support_update_ne_zero, support_zero, support_zipWith, toFun_eq_coe, update_eq_erase, update_eq_erase_add_single, update_eq_single_add_erase, update_eq_sub_add_single, update_self, zero_apply, zipWith_apply, zipWith_def, zipWith_single_single, zsmul_apply
156
Total205

DFinsupp

Definitions

NameCategoryTheorems
addCommGroup πŸ“–CompOp
1 mathmath: instIsSemisimpleModuleDFinsupp
addCommMonoid πŸ“–CompOp
104 mathmath: coprodMap_apply, comul_single, Module.Flat.dfinsupp, iSupIndep.linearEquiv_symm_apply, iSupIndep.dfinsupp_lsum_injective, lsum_lsingle, linearIndependent_single_iff, lsingle_apply, MultilinearMap.fromDFinsuppEquiv_apply, instIsOrderedCancelAddMonoid, MultilinearMap.dfinsuppFamily_single, Pi.comul_comp_dFinsuppCoeFnLinearMap, Pi.counit_coe_dFinsupp, subtypeDomainLinearMap_apply, mapRange.linearEquiv_refl, Colex.isOrderedCancelAddMonoid, mapRange.linearMap_comp, mapRange.linearEquiv_trans, mapRange.linearEquiv_symm, Submodule.biSup_eq_range_dfinsupp_lsum, Lex.isOrderedCancelAddMonoid, MultilinearMap.dfinsuppFamily_apply_toFun, MultilinearMap.dfinsuppFamily_apply_support', Lex.isOrderedAddMonoid, injective_pi_lapply, range_mapRangeLinearMap, Pi.counit_comp_dFinsuppCoeFnLinearMap, sum_sum_index, sigmaCurryLEquiv_apply, instIsCocomm, MultilinearMap.dfinsuppFamily_compLinearMap_lsingle, sum_mapRange_index.linearMap, prod_sum_index, MultilinearMap.dfinsuppFamily_add, MultilinearMap.dfinsuppFamily_smul, Submodule.mem_iSup_iff_exists_dfinsupp, Submodule.iSup_eq_range_dfinsupp_lsum, iSup_range_lsingle, MultilinearMap.fromDFinsuppEquiv_single, filterLinearMap_apply, counit_comp_lsingle, MultilinearMap.freeDFinsuppEquiv_single, Module.Flat.dfinsupp_iff, comul_comp_lapply, PiTensorProduct.ofDFinsuppEquiv_tprod_apply, MultilinearMap.freeDFinsuppEquiv_def, mapRange.linearEquiv_apply, linearEquivFunOnFintype_symm_apply, prod_finset_sum_index, sum_apply, MultilinearMap.freeFinsuppEquiv_def, subtypeDomain_sum, lsum_single, MultilinearMap.dfinsuppFamilyβ‚—_apply, MultilinearMap.dfinsupp_ext_iff, iSupIndep.linearEquiv_apply, comul_comp_lsingle, sigmaCurryLEquiv_symm_apply, MultilinearMap.dfinsuppFamily_single_left_apply, coprodMap_apply_single, lsum_symm_apply, subtypeDomain_finsupp_sum, PiTensorProduct.ofDFinsuppEquiv_tprod_single, ker_mapRangeLinearMap, sigmaFinsuppLequivDFinsupp_symm_apply, coeFnLinearMap_apply, lmk_apply, sum_finset_sum_index, MultilinearMap.freeDFinsuppEquiv_apply, finset_sum_apply, Module.Free.dfinsupp, linearEquivFunOnFintype_apply, finsuppLequivDFinsupp_apply_apply, MultilinearMap.support_dfinsuppFamily_subset, liftAddHom_singleAddHom, iSupIndep_iff_dfinsupp_lsum_injective, finsuppLequivDFinsupp_symm_apply, coe_finset_sum, lapply_comp_lsingle_of_ne, sumAddHom_singleAddHom, counit_single, MultilinearMap.dfinsuppFamily_zero, Module.annihilator_dfinsupp, instIsOrderedAddMonoid, lapply_apply, Module.instProjectiveDFinsupp, PiTensorProduct.ofDFinsuppEquiv_symm_single_tprod, Pi.comul_coe_dFinsupp, mapRange.linearMap_id, mapRange.linearMap_apply, Module.Finite.instDFinsupp, Colex.isOrderedAddMonoid, Submodule.mem_biSup_iff_exists_dfinsupp, MultilinearMap.dfinsuppFamily_single_left, lapply_comp_lsingle_same, lsum_apply_apply, support_sum, linearIndependent_single, MultilinearMap.fromDFinsuppEquiv_symm_apply, lhom_ext'_iff, lsum_comp_mapRange_toSpanSingleton, sum_single, domLCongr_apply, sigmaFinsuppLequivDFinsupp_apply
addMonoidβ‚‚ πŸ“–CompOpβ€”
addZeroClass πŸ“–CompOp
46 mathmath: liftAddHom_apply, liftAddHom_apply_single, AddMonoidHom.map_dfinsuppSumAddHom, iSupIndep.dfinsuppSumAddHom_injective, sumAddHom_single, coeFnAddMonoidHom_apply, mapRange.addMonoidHom_comp, AddMonoidHom.coe_dfinsuppSumAddHom, AddEquiv.map_dfinsuppSumAddHom, eraseAddHom_apply, sumAddHom_comm, LinearMap.map_dfinsuppSumAddHom, AddSubmonoid.mem_bsupr_iff_exists_dfinsupp, mker_mapRangeAddMonoidHom, ker_mapRangeAddMonoidHom, AddSubmonoid.iSup_eq_mrange_dfinsuppSumAddHom, sumAddHom_piSingle, iSupIndep.linearEquiv_apply, mrange_mapRangeAddMonoidHom, LinearEquiv.map_dfinsuppSumAddHom, add_closure_iUnion_range_single, AddSubmonoid.bsupr_eq_mrange_dfinsuppSumAddHom, mapRange.addMonoidHom_apply, comp_liftAddHom, sumAddHom_apply, sumAddHom_comp_single, liftAddHom_singleAddHom, sumAddHom_zero, sumAddHom_singleAddHom, AddSubmonoid.mem_iSup_iff_exists_dfinsupp, dfinsuppSumAddHom_mem, liftAddHom_comp_single, comp_sumAddHom, sumAddHom_add, AddMonoidHom.dfinsuppSumAddHom_apply, singleAddHom_apply, RingHom.map_dfinsuppSumAddHom, Submodule.dfinsuppSumAddHom_mem, lsum_apply_apply, mapRange.addMonoidHom_id, liftAddHom_symm_apply, addHom_ext'_iff, filterAddMonoidHom_apply, iSupIndep_iff_dfinsuppSumAddHom_injective, sumAddHom_toZeroHom, subtypeDomainAddMonoidHom_apply
addZeroClassβ‚‚ πŸ“–CompOpβ€”
coeFnAddMonoidHom πŸ“–CompOp
5 mathmath: range_mapRangeAddMonoidHom, coeFnAddMonoidHom_apply, mker_mapRangeAddMonoidHom, ker_mapRangeAddMonoidHom, mrange_mapRangeAddMonoidHom
comapDomain πŸ“–CompOp
7 mathmath: equivProdDFinsupp_apply, comapDomain_smul, DirectSum.addEquivProdDirectSum_apply, comapDomain_add, comapDomain_apply, comapDomain_single, comapDomain_zero
comapDomain' πŸ“–CompOp
7 mathmath: comapDomain'_zero, comapDomain'_apply, equivCongrLeft_apply, comapDomain'_smul, comapDomain'_add, comapDomain'_single, domLCongr_apply
decidableZero πŸ“–CompOpβ€”
equivCongrLeft πŸ“–CompOp
1 mathmath: equivCongrLeft_apply
equivFunOnFintype πŸ“–CompOp
7 mathmath: equivFunOnFintype_symm_coe, equivFunOnFintype_single, equivFunOnFintype_apply, sum_eq_sum_fintype, prod_eq_prod_fintype, linearEquivFunOnFintype_symm_apply, equivFunOnFintype_symm_single
equivProdDFinsupp πŸ“–CompOp
4 mathmath: equivProdDFinsupp_smul, equivProdDFinsupp_apply, equivProdDFinsupp_add, equivProdDFinsupp_symm_apply
erase πŸ“–CompOp
23 mathmath: erase_single_ne, piecewise_single_erase, update_eq_erase_add_single, erase_zero, update_eq_single_add_erase, erase_same, eraseAddHom_apply, erase_add_single, support_erase, erase_eq_sub_single, erase_def, erase_sub, erase_neg, erase_single, support_update, erase_single_same, erase_apply, erase_ne, single_add_erase, filter_ne_eq_erase', erase_add, filter_ne_eq_erase, update_eq_erase
eraseAddHom πŸ“–CompOp
1 mathmath: eraseAddHom_apply
extendWith πŸ“–CompOp
5 mathmath: extendWith_zero, extendWith_some, equivProdDFinsupp_symm_apply, extendWith_single_zero, extendWith_none
filter πŸ“–CompOp
20 mathmath: filter_apply_neg, filter_def, filter_smul, filterLinearMap_apply, AddSubmonoid.mem_bsupr_iff_exists_dfinsupp, support_filter, filter_sub, filter_add, filter_apply, filter_zero, filter_single_neg, filter_neg, filter_ne_eq_erase', filter_single, filter_apply_pos, filter_ne_eq_erase, Submodule.mem_biSup_iff_exists_dfinsupp, filter_pos_add_filter_neg, filter_single_pos, filterAddMonoidHom_apply
filterAddMonoidHom πŸ“–CompOp
2 mathmath: AddSubmonoid.bsupr_eq_mrange_dfinsuppSumAddHom, filterAddMonoidHom_apply
hasAddβ‚‚ πŸ“–CompOp
2 mathmath: sigmaUncurry_add, sigmaCurry_add
hasIntScalar πŸ“–CompOp
2 mathmath: zsmul_apply, coe_zsmul
hasNatScalar πŸ“–CompOp
2 mathmath: nsmul_apply, coe_nsmul
instAdd πŸ“–CompOp
60 mathmath: Finsupp.toDFinsupp_add, Multiset.equivDFinsupp_symm_apply, sigmaUncurry_add, prod_add_index, sigmaFinsuppAddEquivDFinsupp_apply, toFinsupp_add, update_eq_erase_add_single, Multiset.Icc_eq, Colex.addRightMono, sigmaFinsuppAddEquivDFinsupp_symm_apply, update_eq_single_add_erase, Multiset.equivDFinsupp_apply, neLocus_self_add_right, mapRange.addEquiv_apply, sigmaFinsuppEquivDFinsupp_add, subtypeDomain_add, update_eq_sub_add_single, erase_add_single, instIsRightCancelAdd, instCanonicallyOrderedAddOfAddLeftMono, coe_add, Multiset.uIcc_eq, instAddLeftReflectLE, Lex.addLeftStrictMono, Lex.addRightStrictMono, neLocus_add_right, mapRange.addEquiv_symm, filter_add, equivProdDFinsupp_add, single_add, add_eq_zero_iff, instOrderedSub, instUniqueSumsDFinsupp, mapRange.addEquiv_refl, comapDomain_add, Lex.addRightMono, sigmaFinsuppLequivDFinsupp_symm_apply, add_apply, neLocus_add_left, neLocus_self_add_left, mk_add, Lex.addLeftMono, single_add_erase, instIsLeftCancelAdd, support_add, Colex.addLeftStrictMono, finsuppAddEquivDFinsupp_apply, Colex.addRightStrictMono, finsuppAddEquivDFinsupp_symm_apply, comapDomain'_add, erase_add, mapRange.addEquiv_trans, sigmaCurry_add, Colex.addLeftMono, filter_pos_add_filter_neg, instTwoUniqueSumsDFinsupp, instIsCancelAdd, mapRange_add, sum_add_index, sigmaFinsuppLequivDFinsupp_apply
instAddGroup πŸ“–CompOp
2 mathmath: range_mapRangeAddMonoidHom, ker_mapRangeAddMonoidHom
instAddMonoid πŸ“–CompOpβ€”
instDFunLike πŸ“–CompOp
233 mathmath: DirectSum.IsInternal.ofBijective_coeLinearMap_same, single_eq_same, DirectSum.bracket_apply, DirectSum.finite_support, MultilinearMap.fromDFinsuppEquiv_apply, filter_apply_neg, lex_lt_iff_of_unique, piecewise_single_erase, DirectSum.decompose_of_mem_same, Finset.mem_dfinsupp_iff_of_support_subset, equivFunOnFintype_symm_coe, mapRange_def, zero_apply, Pi.counit_coe_dFinsupp, DirectSum.lie_module_bracket_apply, DirectSum.sub_apply, coe_mono, tsub_apply, prod_eq_zero_iff, DirectSum.lequivCongrLeft_apply, DirectSum.lmap_apply, LinearMap.IsSymmetric.directSum_decompose_apply, subtypeSupportEqEquiv_apply_coe, coeFnAddMonoidHom_apply, equivFunOnFintype_apply, smul_apply, DirectSum.decompose_eq_mul_idempotent, Multiset.toDFinsupp_apply, lt_def, DirectSum.coe_of_mul_apply_aux, subtypeDomain_def, notMem_support_iff, equivProdDFinsupp_apply, MultilinearMap.dfinsuppFamily_apply_toFun, DirectSum.sum_univ_of, zipWith_def, le_iff', coe_tsub, MvPolynomial.weightedDecomposition.decompose'_apply, coe_mk', qExpansion_of_mul, AdicCompletion.sumInv_apply, lex_lt_iff, DirectSum.coe_of_mul_apply_add, lex_def, DirectSum.coe_decompose_mul_add_of_left_mem, mem_singleton_apply_iff, erase_same, coe_sup, update_eq_sub_add_single, Pi.lex_eq_dfinsupp_lex, single_le_iff, DirectSum.addEquivProdDirectSum_symm_apply_toFun, DirectSum.sigmaLcurry_apply, filter_def, DirectSum.coe_decompose_mul_of_left_mem_of_le, Finsupp.toDFinsupp_coe, DirectSum.coe_mul_of_apply_of_not_le, extendWith_some, colex_lt_iff_of_unique, DirectSum.coe_decompose_mul_of_left_mem, lex_lt_of_lt_of_preorder, erase_add_single, sigmaUncurry_apply, Lex.le_iff_of_unique, GradedAlgebra.proj_recompose, coe_neg, le_def, sigmaFinsuppEquivDFinsupp_symm_apply, card_Iic, lex_lt_of_lt, DirectSum.coe_mul_apply, DirectSum.mk_apply_of_notMem, single_eq_of_ne, Colex.le_iff_of_unique, DirectSum.decompose_mul_add_left, le_iff, DirectSum.IsInternal.ofBijective_coeLinearMap_of_mem_ne, update_self, MvPolynomial.decompose'_apply, toFinsupp_coe, MultilinearMap.freeDFinsuppEquiv_single, Colex.lt_iff, PiTensorProduct.ofDFinsuppEquiv_tprod_apply, coe_add, card_Ioo, lex_iff_of_unique, comapDomain'_apply, coe_orderEmbeddingToFun, DirectSum.coe_decompose_mul_of_right_mem_of_not_le, DirectSum.coe_decompose_mul_of_left_mem_of_not_le, coe_piecewise, sup_apply, DirectSum.addEquivProdDirectSum_apply, erase_eq_sub_single, Icc_eq, DirectSum.coe_of_mul_apply_of_not_le, sum_apply, DirectSum.mk_apply_of_mem, HahnEmbedding.Seed.coeff_baseEmbedding, erase_def, zsmul_apply, coe_smul, coe_neLocus, notMem_neLocus, nsmul_apply, DirectSum.IsInternal.ofBijective_coeLinearMap_of_mem, mapRange_apply, MvPolynomial.weightedHomogeneousComponent_directSum, ext_iff, DirectSum.coe_decompose_mul_of_right_mem, card_uIcc, coe_update, DirectSum.coe_mul_of_apply_of_mem_zero, DirectSum.of_eq_same, MultilinearMap.dfinsuppFamily_single_left_apply, DirectSum.sigmaCurry_apply, MvPolynomial.decomposition.decompose'_apply, Lex.lt_iff_of_unique, MultilinearMap.fromDirectSumEquiv_apply, filter_apply, DirectSum.ext_iff, DirectSum.coe_decompose_mul_add_of_right_mem, DirectSum.coe_mul_of_apply_aux, TensorProduct.directSumLeft_tmul, MvPolynomial.DirectSum.coeLinearMap_eq_finsum, card_pi, mem_pi, lex_le_iff_of_unique, inf_apply, comapDomain_apply, coeFnLinearMap_apply, sumZeroHom_piSingle, add_apply, erase_apply, neg_apply, erase_ne, DirectSum.decompose_of_mem_ne, Submodule.IsHomogeneous.mem_iff, MultilinearMap.freeDFinsuppEquiv_apply, finset_sum_apply, toFun_eq_coe, coe_inf, TensorProduct.directSumRight_tmul, DirectSum.SetLike.IsHomogeneous.mem_iff, DirectSum.coeFnAddMonoidHom_apply, rangeIcc_apply, DirectSum.sigmaLuncurry_apply, coe_strictMono, DirectSum.coe_mul_of_apply_add, finsuppLEquivDirectSum_apply, DirectSum.lof_apply, card_Ico, DirectSum.map_apply, DirectSum.apply_eq_component, piecewise_apply, DirectSum.coe_of_mul_apply_of_le, DirectSum.coe_mul_of_apply_of_le, DirectSum.coe_of_mul_apply_of_mem_zero, DirectSum.equivCongrLeft_apply, coe_sub, linearEquivFunOnFintype_apply, DirectSum.of_apply, mem_rangeIcc_apply_iff, single_add_erase, DirectSum.mul_eq_sum_support_ghas_mul, DirectSum.coeFnLinearMap_apply, mk_of_mem, HahnEmbedding.Seed.hahnCoeff_apply, DirectSum.coe_mul_of_apply, DirectSum.coe_mul_apply_eq_dfinsuppSum, GradedAlgebra.proj_apply, mk_apply, coe_finset_sum, coe_le_coe, filter_apply_pos, coe_zsmul, GradedRing.projZeroRingHom_apply, subtypeDomain_apply, sigmaFinsuppEquivDFinsupp_apply, DirectSum.smul_apply, DirectSum.IsInternal.ofBijective_coeLinearMap_of_ne, DirectSum.coe_mul_apply_eq_sum_antidiagonal, lapply_apply, DirectSum.sigmaUncurry_apply, DirectSum.support_subset, DirectSum.decompose_mul_add_right, Pi.comul_coe_dFinsupp, mk_of_notMem, DirectSum.coe_of_apply, zipWith_apply, eq_mk_support, DirectSum.coe_decompose_mul_of_left_mem_zero, DirectSum.coe_decompose_mul_of_right_mem_of_le, DirectSum.sum_support_decompose, PiTensorProduct.ofDirectSumEquiv_tprod_apply, DirectSum.coe_decompose_mul_of_right_mem_zero, DirectSum.AddSubmonoidClass.IsHomogeneous.mem_iff, single_eq_pi_single, single_apply, DirectSum.sum_support_of, finite_support, sub_apply, card_Iio, AlgebraicGeometry.ProjIsoSpecTopComponent.toSpec.image_basicOpen_eq_basicOpen, qExpansion_of_pow, coe_nsmul, support_sum, coe_lt_coe, card_Icc, IsHilbertSum.linearIsometryEquiv_apply_dfinsupp_sum_single, Finset.mem_dfinsupp_iff, DirectSum.map_eq_iff, DirectSum.add_apply, support_subset_iff, DirectSum.coe_of_mul_apply, DirectSum.lmap_eq_iff, card_Ioc, GradedRing.proj_apply, extendWith_none, OrthogonalFamily.inner_right_dfinsupp, DirectSum.linearEquivFunOnFintype_symm_coe, DirectSum.linearEquivFunOnFintype_apply, OrthogonalFamily.projection_directSum_coeAddHom, GradedRing.proj_recompose, DirectSum.zero_apply, Lex.lt_iff, Ideal.IsHomogeneous.mem_iff, orderEmbeddingToFun_apply, sigmaFinsetFunEquiv_apply_snd_coe, sigmaCurry_apply, coe_zero, DirectSum.of_eq_of_ne
instDecidableEq πŸ“–CompOpβ€”
instInhabited πŸ“–CompOpβ€”
instNeg πŸ“–CompOp
14 mathmath: neLocus_neg_neg, mk_neg, neLocus_neg, prod_neg_index, coe_neg, single_neg, support_neg, erase_neg, Finsupp.toDFinsupp_neg, neg_apply, filter_neg, sum_neg_index, toFinsupp_neg, subtypeDomain_neg
instSub πŸ“–CompOp
17 mathmath: neLocus_self_sub_left, toFinsupp_sub, update_eq_sub_add_single, neLocus_sub_left, neLocus_self_sub_right, erase_eq_sub_single, neLocus_sub_right, erase_sub, filter_sub, single_sub, neLocus_eq_support_sub, Finsupp.toDFinsupp_sub, coe_sub, subtypeDomain_sub, sum_sub_index, mk_sub, sub_apply
instZero πŸ“–CompOp
69 mathmath: Lex.acc_zero, equivProdDFinsupp_smul, comapDomain'_zero, zero_apply, extendWith_zero, sigmaUncurry_add, sigmaUncurry_single, sum_zero_index, smul_apply, erase_zero, instSMulPosMono, smulCommClass, sigmaCurry_single, sigmaCurryLEquiv_apply, sumZeroHom_apply, toFinsupp_smul, mapRange_smul, sigmaUncurry_apply, mk_zero, filter_smul, support_eq_empty, MultilinearMap.freeDFinsuppEquiv_single, instPosSMulStrictMono, MultilinearMap.freeDFinsuppEquiv_def, sigmaCurry_smul, support_zero, neLocus_zero_right, comapDomain_smul, sigmaFinsuppEquivDFinsupp_smul, bot_eq_zero, coe_smul, mapRange_zero, erase_single, subtypeDomain_zero, instPosSMulReflectLE, sigmaCurryLEquiv_symm_apply, instPosSMulMono, add_eq_zero_iff, filter_zero, isScalarTower, sigmaUncurry_smul, erase_single_same, Finsupp.toDFinsupp_smul, instSMulPosReflectLT, filter_single_neg, sumZeroHom_piSingle, neLocus_zero_left, comapDomain'_smul, MultilinearMap.freeDFinsuppEquiv_apply, prod_zero_index, single_smul, sigmaUncurry_zero, filter_single, isCentralScalar, instSMulPosReflectLE, sigmaCurry_zero, Finsupp.toDFinsupp_zero, sigmaCurry_add, sumZeroHom_single, single_eq_zero, single_zero, subtypeDomain_smul, comapDomain_zero, mk_smul, support_smul, toFinsupp_zero, instSMulPosStrictMono, sigmaCurry_apply, coe_zero
mapRange πŸ“–CompOp
20 mathmath: coprodMap_apply, mapRange_def, mapRange.addEquiv_apply, mapRange_smul, mapRange_single, mapRange_id, mapRange.linearEquiv_apply, mapRange_surjective, mapRange_zero, mapRange_apply, mapRange_injective, mapRange.addMonoidHom_apply, mapRange_comp, sum_mapRange_index, mapRange_neLocus_eq, prod_mapRange_index, mapRange.linearMap_apply, support_mapRange, mapRange_add, subset_mapRange_neLocus
mk πŸ“–CompOpβ€”
mkAddGroupHom πŸ“–CompOpβ€”
piecewise πŸ“–CompOp
4 mathmath: piecewise_single_erase, lex_fibration, coe_piecewise, piecewise_apply
sigmaFinsetFunEquiv πŸ“–CompOp
2 mathmath: sigmaFinsetFunEquiv_apply_fst, sigmaFinsetFunEquiv_apply_snd_coe
single πŸ“–CompOp
72 mathmath: comul_single, iSupIndep.linearEquiv_symm_apply, single_eq_same, linearIndependent_single_iff, lsingle_apply, prod_single_index, MultilinearMap.dfinsuppFamily_single, erase_single_ne, piecewise_single_erase, liftAddHom_apply_single, extendWith_zero, sigmaUncurry_single, equivFunOnFintype_single, update_eq_erase_add_single, zipWith_single_single, sumAddHom_single, update_eq_single_add_erase, toMultiset_single, sigmaCurry_single, single_eq_single_iff, update_eq_sub_add_single, single_le_iff, mapRange_single, erase_add_single, single_injective, MultilinearMap.fromDFinsuppEquiv_single, single_eq_of_ne, MultilinearMap.freeDFinsuppEquiv_single, single_neg, Multiset.toDFinsupp_replicate, toFinsupp_single, erase_eq_sub_single, single_eq_of_sigma_eq, erase_single, lsum_single, single_tsub, add_closure_iUnion_range_single, Lex.acc_single, single_add, DirectSum.single_eq_lof, MultilinearMap.dfinsuppFamily_single_left_apply, coprodMap_apply_single, PiTensorProduct.ofDFinsuppEquiv_tprod_single, erase_single_same, single_sub, filter_single_neg, sigmaFinsuppEquivDFinsupp_single, MultilinearMap.freeDFinsuppEquiv_apply, single_smul, single_add_erase, filter_single, support_single_subset, Multiset.toDFinsupp_singleton, sum_single_index, counit_single, extendWith_single_zero, PiTensorProduct.ofDFinsuppEquiv_symm_single_tprod, sumZeroHom_single, Finsupp.toDFinsupp_single, singleAddHom_apply, single_eq_zero, single_eq_pi_single, single_left_injective, single_zero, support_single_ne_zero, single_apply, comapDomain_single, linearIndependent_single, filter_single_pos, comapDomain'_single, equivFunOnFintype_symm_single, sum_single
singleAddHom πŸ“–CompOp
7 mathmath: sumAddHom_comp_single, liftAddHom_singleAddHom, sumAddHom_singleAddHom, liftAddHom_comp_single, singleAddHom_apply, liftAddHom_symm_apply, addHom_ext'_iff
subtypeDomain πŸ“–CompOp
14 mathmath: subtypeDomainLinearMap_apply, support_subtypeDomain, subtypeDomain_def, subtypeDomain_add, sum_subtypeDomain_index, subtypeDomain_sum, subtypeDomain_zero, subtypeDomain_finsupp_sum, prod_subtypeDomain_index, subtypeDomain_apply, subtypeDomain_sub, subtypeDomain_neg, subtypeDomain_smul, subtypeDomainAddMonoidHom_apply
subtypeDomainAddMonoidHom πŸ“–CompOp
1 mathmath: subtypeDomainAddMonoidHom_apply
subtypeSupportEqEquiv πŸ“–CompOp
2 mathmath: subtypeSupportEqEquiv_apply_coe, subtypeSupportEqEquiv_symm_apply_coe
support πŸ“–CompOp
76 mathmath: support_zipWith, support_mono, sigmaFinsuppEquivDFinsupp_support, MultilinearMap.fromDFinsuppEquiv_apply, Multiset.toDFinsupp_support, mapRange_def, disjoint_iff, support_subtypeDomain, prod_eq_zero_iff, neLocus_self_sub_left, subtypeSupportEqEquiv_apply_coe, mem_support_toFun, subtypeDomain_def, notMem_support_iff, zipWith_def, toDFinsupp_support, DirectSum.support_of, support_mk_subset, neLocus_self_add_right, filter_def, support_erase, subset_support_tsub, card_Iic, support_tsub, support_eq_empty, support_inf, DirectSum.coe_mul_apply, neLocus_self_sub_right, support_rangeIcc_subset, support_mk'_subset, card_Ioo, support_filter, support_zero, neLocus_zero_right, support_update_ne_zero, Icc_eq, support_neg, erase_def, GradedRing.mem_support_iff, subtypeSupportEqEquiv_symm_apply_coe, support_update, mem_support_iff, card_uIcc, MultilinearMap.fromDirectSumEquiv_apply, neLocus_eq_support_sub, neLocus_zero_left, support_sup_union_support_inf, neLocus_self_add_left, card_Ico, DirectSum.support_of_subset, MultilinearMap.support_dfinsuppFamily_subset, toFinsupp_support, DirectSum.mul_eq_sum_support_ghas_mul, support_single_subset, support_add, DirectSum.support_smul, DirectSum.support_zero, DirectSum.support_subset, eq_mk_support, DirectSum.sum_support_decompose, support_inf_union_support_sup, GradedAlgebra.mem_support_iff, support_single_ne_zero, DirectSum.sum_support_of, card_Iio, support_sum, card_Icc, support_mapRange, Finset.mem_dfinsupp_iff, support_subset_iff, support_smul, card_Ioc, sigmaFinsetFunEquiv_apply_fst, support_sup, support_monotone, sigmaFinsetFunEquiv_apply_snd_coe
support' πŸ“–CompOp
2 mathmath: MultilinearMap.dfinsuppFamily_apply_support', DirectSum.addEquivProdDirectSum_symm_apply_support'
toFun πŸ“–CompOp
1 mathmath: toFun_eq_coe
unique πŸ“–CompOpβ€”
uniqueOfIsEmpty πŸ“–CompOpβ€”
update πŸ“–CompOp
8 mathmath: update_eq_erase_add_single, update_eq_single_add_erase, update_eq_sub_add_single, update_self, support_update_ne_zero, support_update, coe_update, update_eq_erase
zipWith πŸ“–CompOp
6 mathmath: support_zipWith, zipWith_single_single, zipWith_def, zipWith_neLocus_eq_right, zipWith_apply, zipWith_neLocus_eq_left

Theorems

NameKindAssumesProvesValidatesDepends On
add_apply πŸ“–mathematicalβ€”DFunLike.coe
DFinsupp
AddZero.toZero
AddZeroClass.toAddZero
instDFunLike
instAdd
AddZero.toAdd
β€”β€”
coeFnAddMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
DFinsupp
AddZero.toZero
AddZeroClass.toAddZero
addZeroClass
Pi.addZeroClass
AddMonoidHom.instFunLike
coeFnAddMonoidHom
instDFunLike
β€”β€”
coe_add πŸ“–mathematicalβ€”DFunLike.coe
DFinsupp
AddZero.toZero
AddZeroClass.toAddZero
instDFunLike
instAdd
Pi.instAdd
AddZero.toAdd
β€”β€”
coe_mk' πŸ“–mathematicalβ€”DFunLike.coe
DFinsupp
instDFunLike
mk'
β€”β€”
coe_neg πŸ“–mathematicalβ€”DFunLike.coe
DFinsupp
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
instDFunLike
instNeg
Pi.instNeg
NegZeroClass.toNeg
β€”β€”
coe_nsmul πŸ“–mathematicalβ€”DFunLike.coe
DFinsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instDFunLike
hasNatScalar
AddMonoid.toNatSMul
Pi.addMonoid
β€”β€”
coe_piecewise πŸ“–mathematicalβ€”DFunLike.coe
DFinsupp
instDFunLike
piecewise
Set.piecewise
β€”β€”
coe_sub πŸ“–mathematicalβ€”DFunLike.coe
DFinsupp
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
instDFunLike
instSub
Pi.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”β€”
coe_update πŸ“–mathematicalβ€”DFunLike.coe
DFinsupp
instDFunLike
update
Function.update
β€”β€”
coe_zero πŸ“–mathematicalβ€”DFunLike.coe
DFinsupp
instDFunLike
instZero
Pi.instZero
β€”β€”
coe_zsmul πŸ“–mathematicalβ€”DFunLike.coe
DFinsupp
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
instDFunLike
hasIntScalar
SubNegMonoid.toZSMul
Pi.subNegMonoid
AddGroup.toSubNegMonoid
β€”β€”
comapDomain'_add πŸ“–mathematicalβ€”comapDomain'
AddZero.toZero
AddZeroClass.toAddZero
DFinsupp
instAdd
β€”ext
add_apply
comapDomain'_apply
comapDomain'_apply πŸ“–mathematicalβ€”DFunLike.coe
DFinsupp
instDFunLike
comapDomain'
β€”β€”
comapDomain'_single πŸ“–mathematicalβ€”comapDomain'
single
β€”β€”
comapDomain'_zero πŸ“–mathematicalβ€”comapDomain'
DFinsupp
instZero
β€”ext
zero_apply
comapDomain'_apply
comapDomain_add πŸ“–mathematicalβ€”comapDomain
AddZero.toZero
AddZeroClass.toAddZero
DFinsupp
instAdd
β€”ext
add_apply
comapDomain_apply
comapDomain_apply πŸ“–mathematicalβ€”DFunLike.coe
DFinsupp
instDFunLike
comapDomain
β€”β€”
comapDomain_single πŸ“–mathematicalβ€”comapDomain
single
β€”ext
comapDomain_apply
Decidable.eq_or_ne
single_eq_same
single_eq_of_ne
comapDomain_zero πŸ“–mathematicalβ€”comapDomain
DFinsupp
instZero
β€”ext
zero_apply
comapDomain_apply
eq_mk_support πŸ“–mathematicalβ€”support
DFunLike.coe
DFinsupp
instDFunLike
Set
Set.instMembership
SetLike.coe
Finset
Finset.instSetLike
β€”ext
equivCongrLeft_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DFinsupp
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivCongrLeft
comapDomain'
Equiv.toFun
Equiv.right_inv
β€”β€”
equivFunOnFintype_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DFinsupp
EquivLike.toFunLike
Equiv.instEquivLike
equivFunOnFintype
instDFunLike
β€”β€”
equivFunOnFintype_single πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DFinsupp
EquivLike.toFunLike
Equiv.instEquivLike
equivFunOnFintype
single
Pi.single
β€”β€”
equivFunOnFintype_symm_coe πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DFinsupp
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivFunOnFintype
instDFunLike
β€”Equiv.symm_apply_apply
equivFunOnFintype_symm_single πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DFinsupp
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivFunOnFintype
Pi.single
single
β€”equivFunOnFintype_symm_coe
equivProdDFinsupp_add πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DFinsupp
AddZero.toZero
AddZeroClass.toAddZero
EquivLike.toFunLike
Equiv.instEquivLike
equivProdDFinsupp
instAdd
Prod.instAdd
AddZero.toAdd
β€”add_apply
comapDomain_add
Option.some_injective
equivProdDFinsupp_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DFinsupp
EquivLike.toFunLike
Equiv.instEquivLike
equivProdDFinsupp
instDFunLike
comapDomain
Option.some_injective
β€”β€”
equivProdDFinsupp_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DFinsupp
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivProdDFinsupp
extendWith
β€”β€”
eraseAddHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
DFinsupp
AddZero.toZero
AddZeroClass.toAddZero
addZeroClass
AddMonoidHom.instFunLike
eraseAddHom
erase
β€”β€”
erase_add πŸ“–mathematicalβ€”erase
AddZero.toZero
AddZeroClass.toAddZero
DFinsupp
instAdd
β€”ext
ite_zero_add
erase_add_single πŸ“–mathematicalβ€”DFinsupp
AddZero.toZero
AddZeroClass.toAddZero
instAdd
erase
single
DFunLike.coe
instDFunLike
β€”ext
single_apply
zero_add
add_zero
erase_apply πŸ“–mathematicalβ€”DFunLike.coe
DFinsupp
instDFunLike
erase
β€”β€”
erase_def πŸ“–mathematicalβ€”erase
Finset.erase
support
DFunLike.coe
DFinsupp
instDFunLike
Set
Set.instMembership
SetLike.coe
Finset
Finset.instSetLike
β€”ext
erase_eq_sub_single πŸ“–mathematicalβ€”erase
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
DFinsupp
instSub
single
DFunLike.coe
instDFunLike
β€”ext
eq_or_ne
single_apply
sub_self
erase_ne
single_eq_of_ne
sub_zero
erase_ne πŸ“–mathematicalβ€”DFunLike.coe
DFinsupp
instDFunLike
erase
β€”β€”
erase_neg πŸ“–mathematicalβ€”erase
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
DFinsupp
instNeg
β€”AddMonoidHom.map_neg
erase_same πŸ“–mathematicalβ€”DFunLike.coe
DFinsupp
instDFunLike
erase
β€”β€”
erase_single πŸ“–mathematicalβ€”erase
single
DFinsupp
instZero
β€”filter_ne_eq_erase
filter_single
erase_single_ne πŸ“–mathematicalβ€”erase
single
β€”erase_single
erase_single_same πŸ“–mathematicalβ€”erase
single
DFinsupp
instZero
β€”erase_single
erase_sub πŸ“–mathematicalβ€”erase
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
DFinsupp
instSub
β€”AddMonoidHom.map_sub
erase_zero πŸ“–mathematicalβ€”erase
DFinsupp
instZero
β€”ext
ext πŸ“–β€”DFunLike.coe
DFinsupp
instDFunLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
DFinsupp
instDFunLike
β€”ext
extendWith_none πŸ“–mathematicalβ€”DFunLike.coe
DFinsupp
instDFunLike
extendWith
β€”β€”
extendWith_single_zero πŸ“–mathematicalβ€”extendWith
single
β€”ext
extendWith_none
single_eq_of_ne
extendWith_some
Decidable.eq_or_ne
single_eq_same
Option.some_injective
extendWith_some πŸ“–mathematicalβ€”DFunLike.coe
DFinsupp
instDFunLike
extendWith
β€”β€”
extendWith_zero πŸ“–mathematicalβ€”extendWith
DFinsupp
instZero
single
β€”ext
extendWith_none
single_eq_same
extendWith_some
single_eq_of_ne
zero_apply
filterAddMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
DFinsupp
AddZero.toZero
AddZeroClass.toAddZero
addZeroClass
AddMonoidHom.instFunLike
filterAddMonoidHom
filter
β€”β€”
filter_add πŸ“–mathematicalβ€”filter
AddZero.toZero
AddZeroClass.toAddZero
DFinsupp
instAdd
β€”ext
ite_add_zero
filter_apply πŸ“–mathematicalβ€”DFunLike.coe
DFinsupp
instDFunLike
filter
β€”β€”
filter_apply_neg πŸ“–mathematicalβ€”DFunLike.coe
DFinsupp
instDFunLike
filter
β€”β€”
filter_apply_pos πŸ“–mathematicalβ€”DFunLike.coe
DFinsupp
instDFunLike
filter
β€”β€”
filter_def πŸ“–mathematicalβ€”filter
Finset.filter
support
DFunLike.coe
DFinsupp
instDFunLike
Set
Set.instMembership
SetLike.coe
Finset
Finset.instSetLike
β€”β€”
filter_ne_eq_erase πŸ“–mathematicalβ€”filter
erase
β€”β€”
filter_ne_eq_erase' πŸ“–mathematicalβ€”filter
erase
β€”β€”
filter_neg πŸ“–mathematicalβ€”filter
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
DFinsupp
instNeg
β€”AddMonoidHom.map_neg
filter_pos_add_filter_neg πŸ“–mathematicalβ€”DFinsupp
AddZero.toZero
AddZeroClass.toAddZero
instAdd
filter
β€”ext
add_zero
zero_add
filter_single πŸ“–mathematicalβ€”filter
single
DFinsupp
instZero
β€”ext
filter_single_neg πŸ“–mathematicalβ€”filter
single
DFinsupp
instZero
β€”filter_single
filter_single_pos πŸ“–mathematicalβ€”filter
single
β€”filter_single
filter_sub πŸ“–mathematicalβ€”filter
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
DFinsupp
instSub
β€”AddMonoidHom.map_sub
filter_zero πŸ“–mathematicalβ€”filter
DFinsupp
instZero
β€”ext
finite_support πŸ“–mathematicalβ€”Set.Finite
setOf
DFunLike.coe
DFinsupp
instDFunLike
β€”Trunc.induction_on
Set.Finite.subset
Multiset.finite_toSet
Subtype.prop
induction πŸ“–β€”DFinsupp
AddZero.toZero
AddZeroClass.toAddZero
instZero
instAdd
single
β€”β€”Trunc.induction_on
Multiset.induction_on
Multiset.notMem_zero
ext
single_add_erase
single_zero
zero_add
inductionβ‚‚ πŸ“–β€”DFinsupp
AddZero.toZero
AddZeroClass.toAddZero
instZero
instAdd
single
β€”β€”induction
ext
single_apply
zero_add
add_zero
instIsCancelAdd πŸ“–mathematicalIsCancelAdd
AddZero.toAdd
AddZeroClass.toAddZero
DFinsupp
AddZero.toZero
instAdd
β€”instIsLeftCancelAdd
IsCancelAdd.toIsLeftCancelAdd
instIsRightCancelAdd
IsCancelAdd.toIsRightCancelAdd
instIsLeftCancelAdd πŸ“–mathematicalIsLeftCancelAdd
AddZero.toAdd
AddZeroClass.toAddZero
DFinsupp
AddZero.toZero
instAdd
β€”ext
add_left_cancel
DFunLike.congr_fun
instIsRightCancelAdd πŸ“–mathematicalIsRightCancelAdd
AddZero.toAdd
AddZeroClass.toAddZero
DFinsupp
AddZero.toZero
instAdd
β€”ext
add_right_cancel
DFunLike.congr_fun
mapRange_add πŸ“–mathematicalAddZero.toZero
AddZeroClass.toAddZero
AddZero.toAdd
mapRange
DFinsupp
instAdd
β€”ext
mapRange_apply πŸ“–mathematicalβ€”DFunLike.coe
DFinsupp
instDFunLike
mapRange
β€”β€”
mapRange_comp πŸ“–mathematicalβ€”mapRangeβ€”ext
mapRange_def πŸ“–mathematicalβ€”mapRange
support
Set
Set.instMembership
SetLike.coe
Finset
Finset.instSetLike
DFunLike.coe
DFinsupp
instDFunLike
β€”ext
mapRange_id πŸ“–mathematicalβ€”mapRangeβ€”ext
mapRange_injective πŸ“–mathematicalβ€”DFinsupp
mapRange
β€”single_injective
mapRange_single
ext
mapRange_single πŸ“–mathematicalβ€”mapRange
single
β€”ext
single_apply
mapRange_surjective πŸ“–mathematicalβ€”DFinsupp
mapRange
β€”single_apply
eq_or_ne
ext
mapRange_zero πŸ“–mathematicalβ€”mapRange
DFinsupp
instZero
β€”ext
mem_support_iff πŸ“–mathematicalβ€”Finset
Finset.instMembership
support
β€”mem_support_toFun
mem_support_toFun πŸ“–mathematicalβ€”Finset
Finset.instMembership
support
β€”Trunc.induction_on
Finset.mem_filter
Multiset.mem_toFinset
coe_mk'
mk_add πŸ“–mathematicalβ€”AddZero.toZero
AddZeroClass.toAddZero
Pi.instAdd
Set.Elem
SetLike.coe
Finset
Finset.instSetLike
Set
Set.instMembership
AddZero.toAdd
DFinsupp
instAdd
β€”ext
zero_add
mk_apply πŸ“–mathematicalβ€”DFunLike.coe
DFinsupp
instDFunLike
Finset
Finset.instMembership
Finset.decidableMem
Set
Set.instMembership
SetLike.coe
Finset.instSetLike
β€”β€”
mk_injective πŸ“–mathematicalβ€”DFinsuppβ€”β€”
mk_neg πŸ“–mathematicalβ€”NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Pi.instNeg
Set.Elem
SetLike.coe
Finset
Finset.instSetLike
Set
Set.instMembership
NegZeroClass.toNeg
DFinsupp
instNeg
β€”ext
neg_zero
mk_of_mem πŸ“–mathematicalFinset
Finset.instMembership
DFunLike.coe
DFinsupp
instDFunLike
Set
Set.instMembership
SetLike.coe
Finset.instSetLike
β€”β€”
mk_of_notMem πŸ“–mathematicalFinset
Finset.instMembership
DFunLike.coe
DFinsupp
instDFunLike
β€”β€”
mk_sub πŸ“–mathematicalβ€”NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Pi.instSub
Set.Elem
SetLike.coe
Finset
Finset.instSetLike
Set
Set.instMembership
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
DFinsupp
instSub
β€”ext
sub_zero
mk_zero πŸ“–mathematicalβ€”Pi.instZero
Set.Elem
SetLike.coe
Finset
Finset.instSetLike
Set
Set.instMembership
DFinsupp
instZero
β€”ext
ne_iff πŸ“–β€”β€”β€”β€”DFunLike.ne_iff
neg_apply πŸ“–mathematicalβ€”DFunLike.coe
DFinsupp
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
instDFunLike
instNeg
NegZeroClass.toNeg
β€”β€”
notMem_support_iff πŸ“–mathematicalβ€”Finset
Finset.instMembership
support
DFunLike.coe
DFinsupp
instDFunLike
β€”not_iff_comm
mem_support_iff
nsmul_apply πŸ“–mathematicalβ€”DFunLike.coe
DFinsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instDFunLike
hasNatScalar
AddMonoid.toNatSMul
β€”β€”
piecewise_apply πŸ“–mathematicalβ€”DFunLike.coe
DFinsupp
instDFunLike
piecewise
Set
Set.instMembership
β€”β€”
piecewise_single_erase πŸ“–mathematicalβ€”piecewise
single
DFunLike.coe
DFinsupp
instDFunLike
erase
Set
Set.instSingletonSet
Set.decidableSingleton
β€”ext
piecewise_apply
single_eq_same
erase_ne
sigmaFinsetFunEquiv_apply_fst πŸ“–mathematicalβ€”Finset
DFunLike.coe
Equiv
DFinsupp
EquivLike.toFunLike
Equiv.instEquivLike
sigmaFinsetFunEquiv
support
β€”β€”
sigmaFinsetFunEquiv_apply_snd_coe πŸ“–mathematicalβ€”Finset
SetLike.instMembership
Finset.instSetLike
DFunLike.coe
Equiv
DFinsupp
support
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
Equiv.sigmaFiberEquiv
sigmaFinsetFunEquiv
instDFunLike
β€”β€”
singleAddHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
DFinsupp
AddZero.toZero
AddZeroClass.toAddZero
addZeroClass
AddMonoidHom.instFunLike
singleAddHom
single
β€”β€”
single_add πŸ“–mathematicalβ€”single
AddZero.toZero
AddZeroClass.toAddZero
AddZero.toAdd
DFinsupp
instAdd
β€”zipWith_single_single
single_add_erase πŸ“–mathematicalβ€”DFinsupp
AddZero.toZero
AddZeroClass.toAddZero
instAdd
single
DFunLike.coe
instDFunLike
erase
β€”ext
single_apply
add_zero
zero_add
single_apply πŸ“–mathematicalβ€”DFunLike.coe
DFinsupp
instDFunLike
single
β€”single_eq_pi_single
Pi.single.eq_1
Function.update.eq_1
single_eq_of_ne πŸ“–mathematicalβ€”DFunLike.coe
DFinsupp
instDFunLike
single
β€”β€”
single_eq_of_sigma_eq πŸ“–mathematicalβ€”singleβ€”β€”
single_eq_pi_single πŸ“–mathematicalβ€”DFunLike.coe
DFinsupp
instDFunLike
single
Pi.single
β€”β€”
single_eq_same πŸ“–mathematicalβ€”DFunLike.coe
DFinsupp
instDFunLike
single
β€”β€”
single_eq_single_iff πŸ“–mathematicalβ€”singleβ€”single_injective
single_eq_of_ne
single_eq_same
single_zero
single_eq_zero πŸ“–mathematicalβ€”single
DFinsupp
instZero
β€”single_zero
single_eq_single_iff
single_injective πŸ“–mathematicalβ€”DFinsupp
single
β€”Pi.single_injective
DFunLike.coe_injective
single_left_injective πŸ“–mathematicalβ€”DFinsupp
single
β€”single_eq_single_iff
single_ne_zero πŸ“–β€”β€”β€”β€”Iff.not
single_eq_zero
single_neg πŸ“–mathematicalβ€”single
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
NegZeroClass.toNeg
DFinsupp
instNeg
β€”AddMonoidHom.map_neg
single_sub πŸ“–mathematicalβ€”single
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
DFinsupp
instSub
β€”AddMonoidHom.map_sub
single_zero πŸ“–mathematicalβ€”single
DFinsupp
instZero
β€”DFunLike.coe_injective
Pi.single_zero
sub_apply πŸ“–mathematicalβ€”DFunLike.coe
DFinsupp
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
instDFunLike
instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”β€”
subtypeDomainAddMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
DFinsupp
AddZero.toZero
AddZeroClass.toAddZero
addZeroClass
AddMonoidHom.instFunLike
subtypeDomainAddMonoidHom
subtypeDomain
β€”β€”
subtypeDomain_add πŸ“–mathematicalβ€”subtypeDomain
AddZero.toZero
AddZeroClass.toAddZero
DFinsupp
instAdd
β€”DFunLike.coe_injective
subtypeDomain_apply πŸ“–mathematicalβ€”DFunLike.coe
DFinsupp
instDFunLike
subtypeDomain
β€”β€”
subtypeDomain_def πŸ“–mathematicalβ€”subtypeDomain
Finset.subtype
support
DFunLike.coe
DFinsupp
instDFunLike
Set
Set.instMembership
SetLike.coe
Finset
Finset.instSetLike
β€”ext
subtypeDomain_neg πŸ“–mathematicalβ€”subtypeDomain
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
DFinsupp
instNeg
β€”DFunLike.coe_injective
subtypeDomain_sub πŸ“–mathematicalβ€”subtypeDomain
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
DFinsupp
instSub
β€”DFunLike.coe_injective
subtypeDomain_zero πŸ“–mathematicalβ€”subtypeDomain
DFinsupp
instZero
β€”β€”
subtypeSupportEqEquiv_apply_coe πŸ“–mathematicalβ€”Finset
SetLike.instMembership
Finset.instSetLike
DFunLike.coe
Equiv
DFinsupp
support
EquivLike.toFunLike
Equiv.instEquivLike
subtypeSupportEqEquiv
instDFunLike
β€”β€”
subtypeSupportEqEquiv_symm_apply_coe πŸ“–mathematicalβ€”DFinsupp
Finset
support
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
subtypeSupportEqEquiv
SetLike.instMembership
Finset.instSetLike
β€”β€”
support_add πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
support
AddZero.toZero
AddZeroClass.toAddZero
DFinsupp
instAdd
Finset.instUnion
β€”support_zipWith
support_eq_empty πŸ“–mathematicalβ€”support
Finset
Finset.instEmptyCollection
DFinsupp
instZero
β€”ext
support.congr_simp
support_erase πŸ“–mathematicalβ€”support
erase
Finset.erase
β€”Finset.ext
support_filter πŸ“–mathematicalβ€”support
filter
Finset.filter
β€”β€”
support_mapRange πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
support
mapRange
β€”support.congr_simp
mapRange_def
support_mk'_subset πŸ“–mathematicalMultiset
Multiset.instMembership
Finset
Finset.instHasSubset
support
mk'
Multiset.toFinset
β€”Multiset.mem_toFinset
Multiset.toFinset_dedup
Finset.mem_filter
support_mk_subset πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
support
β€”Multiset.mem_toFinset
Finset.mem_filter
support_neg πŸ“–mathematicalβ€”support
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
DFinsupp
instNeg
β€”Finset.ext
support_single_ne_zero πŸ“–mathematicalβ€”support
single
Finset
Finset.instSingleton
β€”β€”
support_single_subset πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
support
single
Finset.instSingleton
β€”support_mk'_subset
support_subset_iff πŸ“–mathematicalβ€”Set
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
support
DFunLike.coe
DFinsupp
instDFunLike
β€”not_imp_comm
support_subtypeDomain πŸ“–mathematicalβ€”support
subtypeDomain
Finset.subtype
β€”Finset.ext
support_update πŸ“–mathematicalβ€”support
update
Finset
erase
Finset.instInsert
β€”Finset.ext
support.congr_simp
update_eq_erase
support_erase
support_update_ne_zero
support_update_ne_zero πŸ“–mathematicalβ€”support
update
Finset
Finset.instInsert
β€”Finset.ext
eq_or_ne
Function.update_self
Function.update_of_ne
support_zero πŸ“–mathematicalβ€”support
DFinsupp
instZero
Finset
Finset.instEmptyCollection
β€”β€”
support_zipWith πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
support
zipWith
Finset.instUnion
β€”β€”
toFun_eq_coe πŸ“–mathematicalβ€”toFun
DFunLike.coe
DFinsupp
instDFunLike
β€”β€”
update_eq_erase πŸ“–mathematicalβ€”update
erase
β€”ext
eq_or_ne
Function.update_self
Function.update_of_ne
update_eq_erase_add_single πŸ“–mathematicalβ€”update
AddZero.toZero
AddZeroClass.toAddZero
DFinsupp
instAdd
erase
single
β€”ext
eq_or_ne
Function.update_self
single_apply
zero_add
Function.update_of_ne
add_zero
update_eq_single_add_erase πŸ“–mathematicalβ€”update
AddZero.toZero
AddZeroClass.toAddZero
DFinsupp
instAdd
single
erase
β€”ext
eq_or_ne
Function.update_self
single_apply
add_zero
Function.update_of_ne
zero_add
update_eq_sub_add_single πŸ“–mathematicalβ€”update
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
DFinsupp
instAdd
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
instSub
single
DFunLike.coe
instDFunLike
β€”update_eq_erase_add_single
erase_eq_sub_single
update_self πŸ“–mathematicalβ€”update
DFunLike.coe
DFinsupp
instDFunLike
β€”ext
Function.update_eq_self
zero_apply πŸ“–mathematicalβ€”DFunLike.coe
DFinsupp
instDFunLike
instZero
β€”β€”
zipWith_apply πŸ“–mathematicalβ€”DFunLike.coe
DFinsupp
instDFunLike
zipWith
β€”β€”
zipWith_def πŸ“–mathematicalβ€”zipWith
Finset
Finset.instUnion
support
Set
Set.instMembership
SetLike.coe
Finset.instSetLike
DFunLike.coe
DFinsupp
instDFunLike
β€”β€”
zipWith_single_single πŸ“–mathematicalβ€”zipWith
single
β€”β€”
zsmul_apply πŸ“–mathematicalβ€”DFunLike.coe
DFinsupp
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
instDFunLike
hasIntScalar
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
β€”β€”

DFinsupp.mapRange

Definitions

NameCategoryTheorems
addEquiv πŸ“–CompOp
4 mathmath: addEquiv_apply, addEquiv_symm, addEquiv_refl, addEquiv_trans
addMonoidHom πŸ“–CompOp
7 mathmath: DFinsupp.range_mapRangeAddMonoidHom, addMonoidHom_comp, DFinsupp.mker_mapRangeAddMonoidHom, DFinsupp.ker_mapRangeAddMonoidHom, DFinsupp.mrange_mapRangeAddMonoidHom, addMonoidHom_apply, addMonoidHom_id

Theorems

NameKindAssumesProvesValidatesDepends On
addEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
AddEquiv
DFinsupp
AddZero.toZero
AddZeroClass.toAddZero
DFinsupp.instAdd
EquivLike.toFunLike
AddEquiv.instEquivLike
addEquiv
DFinsupp.mapRange
AddZero.toAdd
β€”β€”
addEquiv_refl πŸ“–mathematicalβ€”addEquiv
AddEquiv.refl
AddZero.toAdd
AddZeroClass.toAddZero
DFinsupp
AddZero.toZero
DFinsupp.instAdd
β€”AddEquiv.ext
DFinsupp.mapRange_id
addEquiv_symm πŸ“–mathematicalβ€”AddEquiv.symm
DFinsupp
AddZero.toZero
AddZeroClass.toAddZero
DFinsupp.instAdd
addEquiv
AddZero.toAdd
β€”β€”
addEquiv_trans πŸ“–mathematicalβ€”addEquiv
AddEquiv.trans
AddZero.toAdd
AddZeroClass.toAddZero
DFinsupp
AddZero.toZero
DFinsupp.instAdd
β€”AddEquiv.ext
DFinsupp.ext
addMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
DFinsupp
AddZero.toZero
AddZeroClass.toAddZero
DFinsupp.addZeroClass
AddMonoidHom.instFunLike
addMonoidHom
DFinsupp.mapRange
β€”β€”
addMonoidHom_comp πŸ“–mathematicalβ€”addMonoidHom
AddMonoidHom.comp
AddZeroClass.toAddZero
DFinsupp
AddZero.toZero
DFinsupp.addZeroClass
β€”AddMonoidHom.ext
DFinsupp.ext
addMonoidHom_id πŸ“–mathematicalβ€”addMonoidHom
AddMonoidHom.id
AddZeroClass.toAddZero
DFinsupp
AddZero.toZero
DFinsupp.addZeroClass
β€”AddMonoidHom.ext
DFinsupp.mapRange_id

(root)

Definitions

NameCategoryTheorems
Β«termΞ β‚€_,_Β» πŸ“–CompOpβ€”

---

← Back to Index