Documentation Verification Report

WellFounded

📁 Source: Mathlib/Data/DFinsupp/WellFounded.lean

Statistics

MetricCount
Definitions0
TheoremswellFoundedLT, wellFoundedLT_of_finite, acc, acc_of_single, acc_of_single_erase, acc_single, acc_zero, wellFounded, wellFounded', wellFoundedLT, wellFoundedLT_of_finite, wellFounded_of_finite, lex_fibration, wellFoundedLT, wellFoundedLT', wellFoundedLT_of_finite, wellFoundedLT, wellFoundedLT, wellFoundedLT, wellFounded, wellFoundedLT, wellFoundedLT
22
Total22

DFinsupp

Theorems

NameKindAssumesProvesValidatesDepends On
lex_fibration 📖mathematicalRelation.Fibration
Set
DFinsupp
Prod.GameAdd
Lex
piecewise
ext
wellFoundedLT 📖mathematicalWellFoundedLT
Preorder.toLT
DFinsupp
instPreorder
instIsPreorderLe
Std.Trichotomous.swap
IsWellOrder.toTrichotomous
WellOrderingRel.isWellOrder
Lex.wellFounded'
IsWellFounded.wf
instWellFoundedLTAntisymmetrizationLe
IsWellOrder.toIsWellFounded
IsStrictOrder.swap
IsStrictTotalOrder.toIsStrictOrder
instIsStrictTotalOrderOfIsWellOrder
lex_lt_of_lt_of_preorder
wellFoundedLT' 📖mathematicalCanonicallyOrderedAdd
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
Preorder.toLE
PartialOrder.toPreorder
WellFoundedLT
Preorder.toLT
DFinsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instPreorder
wellFoundedLT
LE.le.not_gt
zero_le
wellFoundedLT_of_finite 📖mathematicalWellFoundedLT
Preorder.toLT
DFinsupp
instPreorder
IsWellFounded.wf
Pi.wellFoundedLT

DFinsupp.Colex

Theorems

NameKindAssumesProvesValidatesDepends On
wellFoundedLT 📖mathematicalCanonicallyOrderedAdd
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
Preorder.toLE
PartialOrder.toPreorder
WellFoundedLT
Preorder.toLT
Colex
DFinsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DFinsupp.instLTColex
DFinsupp.Lex.wellFoundedLT
OrderDual.instTrichotomousLt
instWellFoundedGTOrderDualOfWellFoundedLT
wellFoundedLT_of_finite 📖mathematicalWellFoundedLTColex
DFinsupp
DFinsupp.instLTColex
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DFinsupp.Lex.wellFoundedLT_of_finite
OrderDual.finite

DFinsupp.Lex

Theorems

NameKindAssumesProvesValidatesDepends On
acc 📖mathematicalPi.instMinForall_mathlib
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
Prop.instCompleteLinearOrder
Compl.compl
Pi.instCompl
Prop.instCompl
DFinsupp
DFinsupp.Lex
acc_of_single
acc_single
acc_of_single 📖DFinsupp
DFinsupp.Lex
DFinsupp.single
DFunLike.coe
DFinsupp.instDFunLike
Finset.induction
DFinsupp.support_eq_empty
acc_zero
acc_of_single_erase
Finset.mem_insert_self
DFinsupp.support_erase
Finset.erase_insert
DFinsupp.erase_ne
Membership.mem.ne_of_notMem
Finset.mem_insert_of_mem
acc_of_single_erase 📖DFinsupp
DFinsupp.Lex
DFinsupp.single
DFunLike.coe
DFinsupp.instDFunLike
DFinsupp.erase
Lean.Meta.FastSubsingleton.elim
Lean.Meta.instFastSubsingletonForall
Lean.Meta.instFastSubsingletonDecidable
DFinsupp.piecewise_single_erase
Acc.of_fibration
DFinsupp.lex_fibration
Acc.prod_gameAdd
acc_single 📖mathematicalPi.instMinForall_mathlib
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
Prop.instCompleteLinearOrder
Compl.compl
Pi.instCompl
Prop.instCompl
DFinsupp
DFinsupp.Lex
DFinsupp.single
acc_of_single
eq_or_ne
DFinsupp.single_eq_of_ne
DFinsupp.single_zero
acc_zero
DFinsupp.single_apply
acc_zero 📖mathematicalDFinsupp
DFinsupp.Lex
DFinsupp.instZero
wellFounded 📖mathematicalPi.instMinForall_mathlib
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
Prop.instCompleteLinearOrder
Compl.compl
Pi.instCompl
Prop.instCompl
DFinsupp
DFinsupp.Lex
acc
wellFounded' 📖mathematicalFunction.swapDFinsupp
DFinsupp.Lex
wellFounded
Not.imp_symm
wellFoundedLT 📖mathematicalCanonicallyOrderedAdd
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
Preorder.toLE
PartialOrder.toPreorder
WellFoundedLT
Preorder.toLT
Lex
DFinsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DFinsupp.instLTLex
wellFounded'
LE.le.not_gt
zero_le
IsWellFounded.wf
wellFoundedLT_of_finite 📖mathematicalWellFoundedLTLex
DFinsupp
DFinsupp.instLTLex
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
wellFounded_of_finite
instIsStrictTotalOrderLt
IsWellFounded.wf
wellFounded_of_finite 📖mathematicalDFinsupp
DFinsupp.Lex
Pi.Lex.wellFounded

Function

Theorems

NameKindAssumesProvesValidatesDepends On
wellFoundedLT 📖mathematicalWellFoundedLT
Preorder.toLT
Pi.preorder
Pi.wellFoundedLT

Function.Lex

Theorems

NameKindAssumesProvesValidatesDepends On
wellFoundedLT 📖mathematicalWellFoundedLT
Lex
Pi.instLTLexForall
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Pi.Lex.wellFoundedLT

Pi

Theorems

NameKindAssumesProvesValidatesDepends On
wellFoundedLT 📖mathematicalWellFoundedLT
Preorder.toLT
preorderisEmpty_or_nonempty
Lean.Meta.FastSubsingleton.elim
Lean.Meta.instFastSubsingletonForall
Lean.Meta.instFastSubsingletonForallOfFastIsEmpty
IsWellFounded.wf
DFinsupp.wellFoundedLT
WellFounded.not_lt_min

Pi.Colex

Theorems

NameKindAssumesProvesValidatesDepends On
wellFoundedLT 📖mathematicalWellFoundedLTColex
Pi.instLTColexForall
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Pi.Lex.wellFoundedLT
OrderDual.finite

Pi.Lex

Theorems

NameKindAssumesProvesValidatesDepends On
wellFounded 📖mathematicalPi.LexisEmpty_or_nonempty
Lean.Meta.FastSubsingleton.elim
Lean.Meta.instFastSubsingletonForall
Lean.Meta.instFastSubsingletonForallOfFastIsEmpty
DFinsupp.Lex.wellFounded'
WellFounded.not_lt_min
IsStrictTotalOrder.toTrichotomous
Finite.wellFounded_of_trans_of_irrefl
IsTrans.swap
IsStrictOrder.toIsTrans
IsStrictTotalOrder.toIsStrictOrder
Std.Irrefl.swap
IsStrictOrder.toIrrefl
wellFoundedLT 📖mathematicalWellFoundedLTLex
Pi.instLTLexForall
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
wellFounded
instIsStrictTotalOrderLt
IsWellFounded.wf

---

← Back to Index