Documentation Verification Report

Action

๐Ÿ“ Source: Mathlib/Data/ENNReal/Action.lean

Statistics

MetricCount
DefinitionsinstAlgebraNNReal, instDistribMulActionNNReal, instModuleNNReal, instMulActionNNReal
4
Theoremscoe_smul, instIsScalarTowerNNReal, instPosSMulStrictMonoNNReal, instSMulPosMonoNNReal, nnreal_smul_lt_top, nnreal_smul_lt_top_iff, nnreal_smul_ne_top, nnreal_smul_ne_top_iff, smulCommClass_left, smulCommClass_right, smul_def, smul_toNNReal, smul_top, toReal_smul
14
Total18

ENNReal

Definitions

NameCategoryTheorems
instAlgebraNNReal ๐Ÿ“–CompOp
131 mathmath: MeasureTheory.Measure.MutuallySingular.smul_nnreal, MeasureTheory.Measure.IsHaarMeasure.nnreal_smul, MeasureTheory.Measure.isAddInvariant_eq_smul_of_compactSpace, MeasureTheory.integral_smul_nnreal_measure, MeasureTheory.Measure.WeaklyRegular.smul_nnreal, nnreal_smul_lt_top, MeasureTheory.Measure.rnDeriv_smul_right', MeasureTheory.Measure.measure_isMulLeftInvariant_eq_smul_of_ne_top, MeasureTheory.smul_le_stoppedValue_hittingBtwn, MeasureTheory.Measure.haveLebesgueDecompositionSMul, MeasureTheory.le_eLpNorm_of_bddBelow, MeasureTheory.Measure.coe_nnreal_smul_apply, MeasureTheory.eLpNorm_smul_measure_of_ne_top', MeasureTheory.Measure.rnDeriv_smul_right, MeasureTheory.eLpNorm_le_of_ae_nnnorm_bound, MeasureTheory.Measure.haarScalarFactor_smul, MeasureTheory.Measure.OuterRegular.smul_nnreal, MeasureTheory.Measure.integral_isAddLeftInvariant_eq_smul_of_hasCompactSupport, ediam_smul_le, MeasureTheory.addEquivAddHaarChar_smul_preimage, instSMulPosMonoNNReal, MeasureTheory.eLpNorm'_le_nnreal_smul_eLpNorm'_of_ae_le_mul, MeasureTheory.Measure.smul_measure_isAddInvariant_le_of_isCompact_closure, MeasureTheory.Measure.measure_preimage_isAddLeftInvariant_eq_smul_of_hasCompactSupport, MeasureTheory.lpNorm_smul_measure_of_ne_zero, ProbabilityTheory.setBernoulli_apply', MeasureTheory.FiniteMeasure.self_eq_mass_smul_normalize, MeasureTheory.eLpNorm_le_nnreal_smul_eLpNorm_of_ae_le_mul', infEDist_smulโ‚€, MeasureTheory.mulEquivHaarChar_smul_map, MeasureTheory.FiniteMeasure.map_fst_prod, MeasureTheory.Measure.hausdorffMeasure_smulโ‚€, MeasureTheory.SMul.sigmaFinite, MeasureTheory.Measure.isMulLeftInvariant_eq_smul_of_innerRegular, MeasureTheory.Measure.rnDeriv_smul_left', MeasureTheory.eLpNorm'_le_nnreal_smul_eLpNorm'_of_ae_le_mul', MeasureTheory.Measure.isMulLeftInvariant_eq_smul_of_regular, MeasureTheory.Measure.toSignedMeasure_smul, MeasureTheory.hausdorffMeasure_lineMap_image, infEdist_smulโ‚€, MeasureTheory.FiniteMeasure.instContinuousSMulNNReal, MeasureTheory.eLpNormEssSup_le_nnreal_smul_eLpNormEssSup_of_ae_le_mul, MeasureTheory.Measure.measure_isAddHaarMeasure_eq_smul_of_isOpen, MeasureTheory.Measure.instSMulCommClassDomMulActNNReal, MeasureTheory.Measure.measure_isMulInvariant_eq_smul_of_isCompact_closure, nnreal_smul_lt_top_iff, MeasureTheory.smul_le_stoppedValue_hitting, MeasureTheory.Measure.isMulInvariant_eq_smul_of_compactSpace, MeasureTheory.Measure.exists_integral_isMulLeftInvariant_eq_smul_of_hasCompactSupport, MeasureTheory.JordanDecomposition.smul_posPart, edist_smulโ‚€, MeasureTheory.Measure.measure_isAddInvariant_eq_smul_of_isCompact_closure, MeasureTheory.FiniteMeasure.smul_testAgainstNN_apply, MeasureTheory.Measure.measure_isHaarMeasure_eq_smul_of_isEverywherePos, MeasureTheory.Measure.nnreal_smul_coe_apply, MeasureTheory.Measure.addHaarScalarFactor_smul_smul, MeasureTheory.JordanDecomposition.real_smul_posPart_nonneg, MeasureTheory.hausdorffMeasure_homothety_image, MeasureTheory.Measure.smul_measure_isMulInvariant_le_of_isCompact_closure, MeasureTheory.FiniteMeasure.toMeasure_normalize_eq_of_nonzero, MeasureTheory.Measure.measure_isAddHaarMeasure_eq_smul_of_isEverywherePos, MeasureTheory.IsFiniteMeasureOnCompacts.smul_nnreal, MeasureTheory.Measure.measure_isMulInvariant_eq_smul_of_isCompact_closure_of_measurableSet, MeasureTheory.FiniteMeasure.normalize_eq_inv_mass_smul_of_nonzero, MeasureTheory.Measure.instSMulCommClassNNRealDomMulAct, MeasureTheory.Measure.map_right_mul_eq_modularCharacterFun_smul, MeasureTheory.addEquivAddHaarChar_smul_map, MeasureTheory.isMulLeftInvariant_smul_nnreal, MeasureTheory.instIsProbabilityMeasureHAddMeasureHSMulNNRealToNNRealSymm, MeasureTheory.hausdorffMeasure_smul_right_image, MeasureTheory.Measure.measure_isAddLeftInvariant_eq_vadd_of_ne_top, MeasureTheory.Measure.mul_addHaarScalarFactor_smul, MeasureTheory.Measure.integral_isMulLeftInvariant_eq_smul_of_hasCompactSupport, NNReal.instMeasurableSMulโ‚‚ENNReal, MeasureTheory.Measure.isMulLeftInvariant_eq_smul, MeasureTheory.VAddInvariantMeasure.vadd_nnreal, MeasureTheory.Measure.InnerRegular.smul_nnreal, MeasureTheory.JordanDecomposition.smul_negPart, MeasureTheory.isAddRightInvariant_smul_nnreal, MeasureTheory.SMulInvariantMeasure.smul_nnreal, MeasureTheory.mulEquivHaarChar_smul_preimage, MeasureTheory.Measure.measure_preimage_isMulLeftInvariant_eq_smul_of_hasCompactSupport, MeasureTheory.JordanDecomposition.real_smul_posPart_neg, MeasureTheory.Measure.isAddLeftInvariant_eq_smul_of_regular, ediam_smulโ‚€, MeasureTheory.FiniteMeasure.map_smul, MeasureTheory.addEquivAddHaarChar_smul_eq_comap, MeasureTheory.mulEquivHaarChar_smul_eq_comap, MeasureTheory.Measure.isAddLeftInvariant_eq_smul_of_innerRegular, MeasureTheory.JordanDecomposition.real_smul_negPart_neg, AlternatingMap.measure_def, MeasureTheory.maximal_ineq, MeasureTheory.Measure.haarScalarFactor_smul_smul, MeasureTheory.Measure.rnDeriv_smul_left, MeasureTheory.Measure.exists_integral_isAddLeftInvariant_eq_smul_of_hasCompactSupport, smul_toNNReal, StieltjesFunction.measure_smul, MeasureTheory.Measure.Regular.smul_nnreal, MeasureTheory.isLocallyFiniteMeasureSMulNNReal, MeasureTheory.isFiniteMeasureSMulNNReal, MeasureTheory.Integrable.smul_measure_nnreal, MeasureTheory.Measure.measure_isAddInvariant_eq_smul_of_isCompact_closure_of_innerRegularCompactLTTop, MeasureTheory.Measure.InnerRegularCompactLTTop.smul_nnreal, MeasureTheory.Measure.IsEverywherePos.smul_measure_nnreal, MeasureTheory.Measure.haveLebesgueDecompositionSMulRight, MeasureTheory.Measure.IsAddHaarMeasure.nnreal_smul, MeasureTheory.Measure.mul_haarScalarFactor_smul, MeasureTheory.Measure.measure_isAddInvariant_eq_smul_of_isCompact_closure_of_measurableSet, MeasureTheory.lpNorm_smul_measure_of_ne_top, MeasureTheory.JordanDecomposition.real_smul_negPart_nonneg, MeasureTheory.isMulRightInvariant_smul_nnreal, MeasureTheory.isAddLeftInvariant_smul_nnreal, MeasureTheory.Measure.map_right_add_eq_addModularCharacterFun_vadd, MeasureTheory.hausdorffMeasure_homothety_preimage, MeasureTheory.FiniteMeasure.map_snd_prod, instMeasurableSMulNNReal, MeasureTheory.eLpNorm_smul_measure_of_ne_zero', MeasureTheory.OuterMeasure.mkMetric_nnreal_smul, MeasureTheory.Measure.singularPart_smul_right, instPosSMulStrictMonoNNReal, toReal_smul, MeasureTheory.Measure.isAddLeftInvariant_eq_smul, ProbabilityTheory.setBernoulli_apply, edist_smul_le, MeasureTheory.Measure.addHaarScalarFactor_smul, MeasureTheory.eLpNorm_le_nnreal_smul_eLpNorm_of_ae_le_mul, MeasureTheory.Measure.singularPart_smul, MeasureTheory.Measure.measure_isMulInvariant_eq_smul_of_isCompact_closure_of_innerRegularCompactLTTop, MeasureTheory.measureReal_nnreal_smul_apply, ProbabilityTheory.setBernoulli_eq_map, MeasureTheory.Measure.measure_isHaarMeasure_eq_smul_of_isOpen
instDistribMulActionNNReal ๐Ÿ“–CompOpโ€”
instModuleNNReal ๐Ÿ“–CompOpโ€”
instMulActionNNReal ๐Ÿ“–CompOp
11 mathmath: smul_def, MeasureTheory.FiniteMeasure.self_eq_mass_smul_normalize, instIsScalarTowerNNReal, MeasureTheory.FiniteMeasure.map_fst_prod, MeasureTheory.FiniteMeasure.instContinuousSMulNNReal, MeasureTheory.FiniteMeasure.smul_testAgainstNN_apply, smulCommClass_left, MeasureTheory.FiniteMeasure.normalize_eq_inv_mass_smul_of_nonzero, MeasureTheory.FiniteMeasure.map_smul, MeasureTheory.FiniteMeasure.map_snd_prod, smulCommClass_right

Theorems

NameKindAssumesProvesValidatesDepends On
coe_smul ๐Ÿ“–mathematicalโ€”ofNNReal
NNReal
ENNReal
โ€”smul_one_smul
smul_def
smul_eq_mul
coe_mul
smul_mul_assoc
one_mul
instIsScalarTowerNNReal ๐Ÿ“–mathematicalโ€”IsScalarTower
NNReal
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiringNNReal
MulAction.toSemigroupAction
instMulActionNNReal
โ€”smul_assoc
instPosSMulStrictMonoNNReal ๐Ÿ“–mathematicalโ€”PosSMulStrictMono
NNReal
ENNReal
Algebra.toSMul
instCommSemiringNNReal
CommSemiring.toSemiring
instCommSemiring
instAlgebraNNReal
Algebra.id
PartialOrder.toPreorder
instPartialOrderNNReal
instPartialOrder
instZeroNNReal
โ€”mul_lt_mul_right
LT.lt.ne'
coe_pos
coe_ne_top
instSMulPosMonoNNReal ๐Ÿ“–mathematicalโ€”SMulPosMono
NNReal
ENNReal
Algebra.toSMul
instCommSemiringNNReal
CommSemiring.toSemiring
instCommSemiring
instAlgebraNNReal
Algebra.id
PartialOrder.toPreorder
instPartialOrderNNReal
instPartialOrder
instZeroENNReal
โ€”mul_le_mul_left
covariant_swap_mul_of_covariant_mul
IsOrderedMonoid.toMulLeftMono
instIsOrderedMonoid
coe_le_coe
nnreal_smul_lt_top ๐Ÿ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
Top.top
instTopENNReal
NNReal
Algebra.toSMul
instCommSemiringNNReal
CommSemiring.toSemiring
instCommSemiring
instAlgebraNNReal
Algebra.id
โ€”mul_lt_top
nnreal_smul_lt_top_iff ๐Ÿ“–mathematicalโ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
NNReal
Algebra.toSMul
instCommSemiringNNReal
CommSemiring.toSemiring
instCommSemiring
instAlgebraNNReal
Algebra.id
Top.top
instTopENNReal
โ€”lt_top_iff_ne_top
nnreal_smul_ne_top_iff
nnreal_smul_ne_top ๐Ÿ“–โ€”โ€”โ€”โ€”mul_ne_top
nnreal_smul_ne_top_iff ๐Ÿ“–โ€”โ€”โ€”โ€”smul_top
IsStrictOrderedRing.isDomain
NNReal.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
NNReal.instCanonicallyOrderedAdd
IsScalarTower.right
DivisionSemiring.to_moduleIsTorsionFree
nnreal_smul_ne_top
smulCommClass_left ๐Ÿ“–mathematicalโ€”SMulCommClass
NNReal
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiringNNReal
MulAction.toSemigroupAction
instMulActionNNReal
โ€”SMulCommClass.smul_comm
smulCommClass_right ๐Ÿ“–mathematicalโ€”SMulCommClass
NNReal
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiringNNReal
MulAction.toSemigroupAction
instMulActionNNReal
โ€”SMulCommClass.smul_comm
smul_def ๐Ÿ“–mathematicalโ€”NNReal
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiringNNReal
MulAction.toSemigroupAction
instMulActionNNReal
ENNReal
CommSemiring.toSemiring
instCommSemiring
ofNNReal
โ€”โ€”
smul_toNNReal ๐Ÿ“–mathematicalโ€”toNNReal
NNReal
ENNReal
Algebra.toSMul
instCommSemiringNNReal
CommSemiring.toSemiring
instCommSemiring
instAlgebraNNReal
Algebra.id
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
โ€”toNNReal_mul
smul_top ๐Ÿ“–mathematicalโ€”ENNReal
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
instAddCommMonoid
Top.top
instTopENNReal
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instZeroENNReal
โ€”smul_one_mul
mul_top'
IsDomain.toIsCancelMulZero
one_ne_zero
NeZero.charZero_one
instCharZero
toReal_smul ๐Ÿ“–mathematicalโ€”toReal
NNReal
ENNReal
Algebra.toSMul
instCommSemiringNNReal
CommSemiring.toSemiring
instCommSemiring
instAlgebraNNReal
Algebra.id
Real
Real.semiring
NNReal.instAlgebraOfReal
Real.instCommSemiring
โ€”smul_def
smul_eq_mul
toReal_mul
coe_toReal

---

โ† Back to Index