Documentation Verification Report

BigOperators

πŸ“ Source: Mathlib/Data/ENNReal/BigOperators.lean

Statistics

MetricCount
Definitions0
Theoremscoe_finset_prod, coe_finset_sum, exists_le_of_sum_le, finsetSum_iSup, finsetSum_iSup_of_monotone, iInf_sum, lt_top_of_sum_ne_top, ofReal_prod_of_nonneg, ofReal_sum_of_nonneg, prod_div_distrib, prod_div_distrib_of_ne_top, prod_div_distrib_of_ne_zero, prod_inv_distrib, prod_lt_top, prod_ne_top, sum_eq_top, sum_lt_sum_of_nonempty, sum_lt_top, sum_ne_top, toNNReal_prod, toNNReal_sum, toReal_prod, toReal_sum
23
Total23

ENNReal

Theorems

NameKindAssumesProvesValidatesDepends On
coe_finset_prod πŸ“–mathematicalβ€”ofNNReal
Finset.prod
NNReal
CommSemiring.toCommMonoid
instCommSemiringNNReal
ENNReal
instCommSemiring
β€”map_prod
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
coe_finset_sum πŸ“–mathematicalβ€”ofNNReal
Finset.sum
NNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
ENNReal
instAddCommMonoid
β€”map_sum
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
exists_le_of_sum_le πŸ“–mathematicalFinset.Nonempty
ENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Finset.sum
instAddCommMonoid
Finset
Finset.instMembership
β€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_and_eq
sum_lt_sum_of_nonempty
finsetSum_iSup πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Finset.sum
instAddCommMonoid
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrder
β€”Finset.cons_induction
iSup_zero
Finset.sum_cons
iSup_add_iSup
add_le_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
Finset.sum_le_sum
finsetSum_iSup_of_monotone πŸ“–mathematicalMonotone
ENNReal
PartialOrder.toPreorder
instPartialOrder
Finset.sum
instAddCommMonoid
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrder
β€”finsetSum_iSup
exists_ge_ge
iInf_sum πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrder
Finset.sum
instAddCommMonoid
β€”Finset.cons_induction_on
ciInf_const
Finset.sum_cons
iInf_add_iInf
add_le_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
Finset.forall_mem_cons
Finset.sum_le_sum
lt_top_of_sum_ne_top πŸ“–mathematicalFinset
Finset.instMembership
ENNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
Top.top
instTopENNReal
β€”sum_lt_top
Ne.lt_top
ofReal_prod_of_nonneg πŸ“–mathematicalReal
Real.instLE
Real.instZero
ofReal
Finset.prod
Real.instCommMonoid
ENNReal
CommSemiring.toCommMonoid
instCommSemiring
β€”Finset.prod_congr
Real.toNNReal_prod_of_nonneg
ofReal_sum_of_nonneg πŸ“–mathematicalReal
Real.instLE
Real.instZero
ofReal
Finset.sum
Real.instAddCommMonoid
ENNReal
instAddCommMonoid
β€”Finset.sum_congr
Real.toNNReal_sum_of_nonneg
prod_div_distrib πŸ“–mathematicalSet.Pairwise
SetLike.coe
Finset
Finset.instSetLike
ENNReal
instZeroENNReal
Top.top
instTopENNReal
Finset.prod
CommSemiring.toCommMonoid
instCommSemiring
DivInvMonoid.toDiv
instDivInvMonoid
β€”Finset.prod_congr
div_eq_mul_inv
prod_inv_distrib
prod_div_distrib_of_ne_top πŸ“–mathematicalβ€”Finset.prod
ENNReal
CommSemiring.toCommMonoid
instCommSemiring
DivInvMonoid.toDiv
instDivInvMonoid
β€”prod_div_distrib
prod_div_distrib_of_ne_zero πŸ“–mathematicalβ€”Finset.prod
ENNReal
CommSemiring.toCommMonoid
instCommSemiring
DivInvMonoid.toDiv
instDivInvMonoid
β€”prod_div_distrib
prod_inv_distrib πŸ“–mathematicalSet.Pairwise
SetLike.coe
Finset
Finset.instSetLike
ENNReal
instZeroENNReal
Top.top
instTopENNReal
instInv
Finset.prod
CommSemiring.toCommMonoid
instCommSemiring
β€”Finset.cons_induction
inv_one
Finset.prod_cons
Set.Pairwise.mono
Finset.coe_cons
mul_inv
not_or_of_imp
prod_ne_top
imp_iff_not_or
Finset.prod_ne_zero_iff
instNoZeroDivisors
prod_lt_top πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
Top.top
instTopENNReal
Finset.prod
CommSemiring.toCommMonoid
instCommSemiring
β€”WithTop.prod_lt_top
NNReal.instNoZeroDivisors
prod_ne_top πŸ“–β€”β€”β€”β€”WithTop.prod_ne_top
NNReal.instNoZeroDivisors
sum_eq_top πŸ“–mathematicalβ€”Finset.sum
ENNReal
instAddCommMonoid
Top.top
instTopENNReal
Finset
Finset.instMembership
β€”WithTop.sum_eq_top
sum_lt_sum_of_nonempty πŸ“–mathematicalFinset.Nonempty
ENNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
Finset.sum
instAddCommMonoid
β€”Finset.Nonempty.cons_induction
Finset.sum_singleton
Finset.mem_singleton_self
Finset.sum_cons
add_lt_add
sum_lt_top πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
Finset.sum
instAddCommMonoid
Top.top
instTopENNReal
β€”WithTop.sum_lt_top
sum_ne_top πŸ“–β€”β€”β€”β€”WithTop.sum_ne_top
toNNReal_prod πŸ“–mathematicalβ€”toNNReal
Finset.prod
ENNReal
CommSemiring.toCommMonoid
instCommSemiring
NNReal
instCommSemiringNNReal
β€”map_prod
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
toNNReal_sum πŸ“–mathematicalβ€”toNNReal
Finset.sum
ENNReal
instAddCommMonoid
NNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
β€”coe_toNNReal
sum_ne_top
coe_finset_sum
Finset.sum_congr
toReal_prod πŸ“–mathematicalβ€”toReal
Finset.prod
ENNReal
CommSemiring.toCommMonoid
instCommSemiring
Real
Real.instCommMonoid
β€”map_prod
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
toReal_sum πŸ“–mathematicalβ€”toReal
Finset.sum
ENNReal
instAddCommMonoid
Real
Real.instAddCommMonoid
β€”toReal.eq_1
toNNReal_sum
NNReal.coe_sum

---

← Back to Index