Documentation Verification Report

Real

πŸ“ Source: Mathlib/Data/ENNReal/Real.lean

Statistics

MetricCount
DefinitionstoNNRealHom, toRealHom, evalENNRealOfReal
3
Theoremscoe_lt_ofReal, dichotomy, le_ofReal_iff_toReal_le, le_toNNReal_of_coe_le, lt_ofReal_iff_toReal_lt, natCast_le_ofReal, natCast_lt_ofReal, ofNat_le_ofReal, ofNat_lt_ofReal, ofReal_add, ofReal_add_le, ofReal_eq_natCast, ofReal_eq_ofNat, ofReal_eq_ofReal_iff, ofReal_eq_one, ofReal_eq_zero, ofReal_le_coe, ofReal_le_iff_le_toReal, ofReal_le_natCast, ofReal_le_ofNat, ofReal_le_ofReal, ofReal_le_ofReal_iff, ofReal_le_ofReal_iff', ofReal_le_of_le_toReal, ofReal_le_one, ofReal_lt_coe_iff, ofReal_lt_iff_lt_toReal, ofReal_lt_natCast, ofReal_lt_ofNat, ofReal_lt_ofReal_iff, ofReal_lt_ofReal_iff', ofReal_lt_ofReal_iff_of_nonneg, ofReal_lt_one, ofReal_max, ofReal_min, ofReal_mono, ofReal_mul, ofReal_mul', ofReal_ne_zero_iff, ofReal_nsmul, ofReal_of_nonpos, ofReal_pos, ofReal_pow, one_le_ofReal, one_lt_ofReal, sup_eq_zero, toNNReal_le_toNNReal, toNNReal_lt_of_lt_coe, toNNReal_lt_toNNReal, toNNReal_mono, toNNReal_mul, toNNReal_mul_top, toNNReal_pos, toNNReal_pos_iff, toNNReal_pow, toNNReal_strict_mono, toNNReal_top_mul, toReal_add, toReal_add_le, toReal_eq_toReal, toReal_inf, toReal_le_of_le_ofReal, toReal_le_toReal, toReal_lt_of_lt_ofReal, toReal_lt_toReal, toReal_max, toReal_min, toReal_mono, toReal_mono', toReal_mul, toReal_mul_top, toReal_nsmul, toReal_ofReal_mul, toReal_pos, toReal_pos_iff, toReal_pos_iff_ne_top, toReal_pow, toReal_strict_mono, toReal_sup, toReal_top_mul, trichotomy, trichotomyβ‚‚, zero_eq_ofReal
83
Total86

ENNReal

Definitions

NameCategoryTheorems
toNNRealHom πŸ“–CompOpβ€”
toRealHom πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
coe_lt_ofReal πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
ofNNReal
ofReal
Real
Real.instLT
NNReal.toReal
β€”β€”
dichotomy πŸ“–mathematicalβ€”Top.top
ENNReal
instTopENNReal
Real
Real.instLE
Real.instOne
toReal
β€”NeZero.charZero_one
instCharZero
Real.instZeroLEOneClass
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
trichotomyβ‚‚
Fact.out
le_ofReal_iff_toReal_le πŸ“–mathematicalReal
Real.instLE
Real.instZero
ENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ofReal
toReal
β€”CanLift.prf
canLift
Real.le_toNNReal_iff_coe_le
le_toNNReal_of_coe_le πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ofNNReal
NNReal
instPartialOrderNNReal
toNNReal
β€”toNNReal_mono
toNNReal_coe
lt_ofReal_iff_toReal_lt πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
ofReal
Real
Real.instLT
toReal
β€”CanLift.prf
canLift
Real.lt_toNNReal_iff_coe_lt
natCast_le_ofReal πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
ofReal
Real
Real.instLE
Real.instNatCast
β€”ofReal_lt_natCast
natCast_lt_ofReal πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
ofReal
Real
Real.instLT
Real.instNatCast
β€”coe_lt_coe
Real.natCast_lt_toNNReal
ofNat_le_ofReal πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ofReal
Real
Real.instLE
instOfNatAtLeastTwo
Real.instNatCast
β€”natCast_le_ofReal
Nat.AtLeastTwo.toNeZero
ofNat_lt_ofReal πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
ofReal
Real
Real.instLT
instOfNatAtLeastTwo
Real.instNatCast
β€”natCast_lt_ofReal
ofReal_add πŸ“–mathematicalReal
Real.instLE
Real.instZero
ofReal
Real.instAdd
ENNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
β€”ofReal.eq_1
coe_add
Real.toNNReal_add
ofReal_add_le πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ofReal
Real
Real.instAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
β€”coe_le_coe
Real.toNNReal_add_le
ofReal_eq_natCast πŸ“–mathematicalβ€”ofReal
ENNReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Real
Real.instNatCast
β€”Real.toNNReal_eq_natCast
ofReal_eq_ofNat πŸ“–mathematicalβ€”ofReal
Real
instOfNatAtLeastTwo
Real.instNatCast
β€”ofReal_eq_natCast
Nat.AtLeastTwo.toNeZero
ofReal_eq_ofReal_iff πŸ“–mathematicalReal
Real.instLE
Real.instZero
ofRealβ€”ofReal.eq_1
Real.toNNReal_eq_toNNReal_iff
ofReal_eq_one πŸ“–mathematicalβ€”ofReal
ENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Real
Real.instOne
β€”Real.toNNReal_eq_one
ofReal_eq_zero πŸ“–mathematicalβ€”ofReal
ENNReal
instZeroENNReal
Real
Real.instLE
Real.instZero
β€”β€”
ofReal_le_coe πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ofReal
ofNNReal
Real
Real.instLE
NNReal.toReal
β€”ofReal_zero
ofReal_coe_nnreal
instCanonicallyOrderedAdd
ofReal_le_iff_le_toReal πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ofReal
Real
Real.instLE
toReal
β€”CanLift.prf
canLift
Real.toNNReal_le_iff_le_coe
ofReal_le_natCast πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ofReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Real
Real.instLE
Real.instNatCast
β€”coe_le_coe
Real.toNNReal_le_natCast
ofReal_le_ofNat πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ofReal
Real
Real.instLE
instOfNatAtLeastTwo
Real.instNatCast
β€”ofReal_le_natCast
ofReal_le_ofReal πŸ“–mathematicalReal
Real.instLE
ENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ofReal
β€”Real.toNNReal_le_toNNReal
ofReal_le_ofReal_iff πŸ“–mathematicalReal
Real.instLE
Real.instZero
ENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ofReal
β€”ofReal.eq_1
coe_le_coe
Real.toNNReal_le_toNNReal_iff
ofReal_le_ofReal_iff' πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ofReal
Real
Real.instLE
Real.instZero
β€”coe_le_coe
Real.toNNReal_le_toNNReal_iff'
ofReal_le_of_le_toReal πŸ“–mathematicalReal
Real.instLE
toReal
ENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ofReal
β€”LE.le.trans
ofReal_le_ofReal
ofReal_toReal_le
ofReal_le_one πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ofReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Real
Real.instLE
Real.instOne
β€”coe_le_coe
Real.toNNReal_le_one
ofReal_lt_coe_iff πŸ“–mathematicalReal
Real.instLE
Real.instZero
ENNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
ofReal
ofNNReal
Real.instLT
NNReal.toReal
β€”ofReal_lt_iff_lt_toReal
coe_ne_top
coe_toReal
ofReal_lt_iff_lt_toReal πŸ“–mathematicalReal
Real.instLE
Real.instZero
ENNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
ofReal
Real.instLT
toReal
β€”CanLift.prf
canLift
Real.toNNReal_lt_iff_lt_coe
ofReal_lt_natCast πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
ofReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Real
Real.instLT
Real.instNatCast
β€”ofReal_natCast
ofReal_lt_ofReal_iff
Nat.cast_pos
Real.instIsOrderedRing
Real.instNontrivial
Ne.bot_lt
ofReal_lt_ofNat πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
ofReal
Real
Real.instLT
instOfNatAtLeastTwo
Real.instNatCast
β€”ofReal_lt_natCast
Nat.AtLeastTwo.toNeZero
ofReal_lt_ofReal_iff πŸ“–mathematicalReal
Real.instLT
Real.instZero
ENNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
ofReal
β€”ofReal.eq_1
coe_lt_coe
Real.toNNReal_lt_toNNReal_iff
ofReal_lt_ofReal_iff' πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
ofReal
Real
Real.instLT
Real.instZero
β€”coe_lt_coe
Real.toNNReal_lt_toNNReal_iff'
ofReal_lt_ofReal_iff_of_nonneg πŸ“–mathematicalReal
Real.instLE
Real.instZero
ENNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
ofReal
Real.instLT
β€”ofReal.eq_1
coe_lt_coe
Real.toNNReal_lt_toNNReal_iff_of_nonneg
ofReal_lt_one πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
ofReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Real
Real.instLT
Real.instOne
β€”Nat.cast_one
ofReal_lt_natCast
one_ne_zero
ofReal_max πŸ“–mathematicalβ€”ofReal
Real
Real.instMax
ENNReal
instMax
β€”Monotone.map_max
ofReal_mono
ofReal_min πŸ“–mathematicalβ€”ofReal
Real
Real.instMin
ENNReal
instMin
β€”Monotone.map_min
ofReal_mono
ofReal_mono πŸ“–mathematicalβ€”Monotone
Real
ENNReal
Real.instPreorder
PartialOrder.toPreorder
instPartialOrder
ofReal
β€”ofReal_le_ofReal
ofReal_mul πŸ“–mathematicalReal
Real.instLE
Real.instZero
ofReal
Real.instMul
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
β€”Real.toNNReal_mul
ofReal_mul' πŸ“–mathematicalReal
Real.instLE
Real.instZero
ofReal
Real.instMul
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
β€”mul_comm
ofReal_mul
ofReal_ne_zero_iff πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
β€”pos_iff_ne_zero
instCanonicallyOrderedAdd
ofReal_pos
ofReal_nsmul πŸ“–mathematicalβ€”ofReal
Real
AddMonoid.toNatSMul
Real.instAddMonoid
ENNReal
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”nsmul_eq_mul
ofReal_natCast
ofReal_mul
Nat.cast_nonneg
Real.instIsOrderedRing
ofReal_of_nonpos πŸ“–mathematicalReal
Real.instLE
Real.instZero
ofReal
ENNReal
instZeroENNReal
β€”ofReal_eq_zero
ofReal_pos πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
instZeroENNReal
ofReal
Real
Real.instLT
Real.instZero
β€”β€”
ofReal_pow πŸ“–mathematicalReal
Real.instLE
Real.instZero
ofReal
Monoid.toNatPow
Real.instMonoid
ENNReal
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
instCommSemiring
β€”ofReal_eq_coe_nnreal
coe_pow
ofReal_coe_nnreal
NNReal.coe_pow
one_le_ofReal πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
ofReal
Real
Real.instLE
Real.instOne
β€”Nat.cast_one
natCast_le_ofReal
one_ne_zero
one_lt_ofReal πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
ofReal
Real
Real.instLT
Real.instOne
β€”coe_lt_coe
Real.one_lt_toNNReal
sup_eq_zero πŸ“–mathematicalβ€”ENNReal
instMax
instZeroENNReal
β€”sup_eq_bot_iff
toNNReal_le_toNNReal πŸ“–mathematicalβ€”NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
toNNReal
ENNReal
instPartialOrder
β€”coe_toNNReal
coe_le_coe
toNNReal_mono
toNNReal_lt_of_lt_coe πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
ofNNReal
NNReal
instPartialOrderNNReal
toNNReal
β€”toNNReal_strict_mono
coe_ne_top
toNNReal_coe
toNNReal_lt_toNNReal πŸ“–mathematicalβ€”NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
toNNReal
ENNReal
instPartialOrder
β€”coe_toNNReal
coe_lt_coe
toNNReal_strict_mono
toNNReal_mono πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
NNReal
instPartialOrderNNReal
toNNReal
β€”toReal_mono
toNNReal_mul πŸ“–mathematicalβ€”toNNReal
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
NNReal
instSemiringNNReal
β€”WithTop.untopD_zero_mul
toNNReal_mul_top πŸ“–mathematicalβ€”toNNReal
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
Top.top
instTopENNReal
NNReal
instZeroNNReal
β€”toNNReal_mul
MulZeroClass.mul_zero
toNNReal_pos πŸ“–mathematicalβ€”NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
toNNReal
β€”toNNReal_pos_iff
bot_lt_iff_ne_bot
lt_top_iff_ne_top
toNNReal_pos_iff πŸ“–mathematicalβ€”NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
toNNReal
ENNReal
instPartialOrder
instZeroENNReal
Top.top
instTopENNReal
β€”β€”
toNNReal_pow πŸ“–mathematicalβ€”toNNReal
ENNReal
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
instCommSemiring
NNReal
instSemiringNNReal
β€”MonoidHom.map_pow
toNNReal_strict_mono πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
NNReal
instPartialOrderNNReal
toNNReal
β€”coe_toNNReal
LT.lt.ne_top
toNNReal_top_mul πŸ“–mathematicalβ€”toNNReal
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
Top.top
instTopENNReal
NNReal
instZeroNNReal
β€”toNNReal_mul
MulZeroClass.zero_mul
toReal_add πŸ“–mathematicalβ€”toReal
ENNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
Real
Real.instAdd
β€”CanLift.prf
canLift
toReal_add_le πŸ“–mathematicalβ€”Real
Real.instLE
toReal
ENNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
Real.instAdd
β€”top_add
zero_add
add_top
add_zero
le_of_eq
toReal_add
toReal_eq_toReal πŸ“–mathematicalβ€”toRealβ€”toReal_eq_toReal_iff'
toReal_inf πŸ“–mathematicalβ€”toReal
ENNReal
instMin
Real
Real.instMin
β€”toReal_min
toReal_le_of_le_ofReal πŸ“–mathematicalReal
Real.instLE
Real.instZero
ENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ofReal
toRealβ€”ne_top_of_le_ne_top
ofReal_ne_top
le_ofReal_iff_toReal_le
toReal_le_toReal πŸ“–mathematicalβ€”Real
Real.instLE
toReal
ENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
β€”CanLift.prf
canLift
toReal_lt_of_lt_ofReal πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
ofReal
Real
Real.instLT
toReal
β€”lt_ofReal_iff_toReal_lt
LT.lt.ne_top
toReal_lt_toReal πŸ“–mathematicalβ€”Real
Real.instLT
toReal
ENNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
β€”CanLift.prf
canLift
toReal_max πŸ“–mathematicalβ€”toReal
ENNReal
instMax
Real
Real.instMax
β€”le_total
max_eq_right
toReal_mono
max_eq_left
toReal_min πŸ“–mathematicalβ€”toReal
ENNReal
instMin
Real
Real.instMin
β€”le_total
min_eq_left
toReal_mono
min_eq_right
toReal_mono πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Real
Real.instLE
toReal
β€”toReal_le_toReal
ne_top_of_le_ne_top
toReal_mono' πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Top.top
instTopENNReal
Real
Real.instLE
toReal
β€”eq_or_ne
toReal_nonneg
toReal_mono
toReal_mul πŸ“–mathematicalβ€”toReal
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
Real
Real.instMul
β€”MonoidWithZeroHom.map_mul
toReal_mul_top πŸ“–mathematicalβ€”toReal
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
Top.top
instTopENNReal
Real
Real.instZero
β€”toReal_mul
toReal_top
MulZeroClass.mul_zero
toReal_nsmul πŸ“–mathematicalβ€”toReal
ENNReal
AddMonoid.toNatSMul
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Real
Real.instAddMonoid
β€”nsmul_eq_mul
toReal_mul
toReal_natCast
toReal_ofReal_mul πŸ“–mathematicalReal
Real.instLE
Real.instZero
toReal
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
ofReal
Real.instMul
β€”toReal_mul
toReal_ofReal
toReal_pos πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
toReal
β€”toReal_pos_iff
bot_lt_iff_ne_bot
lt_top_iff_ne_top
toReal_pos_iff πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
toReal
ENNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
instZeroENNReal
Top.top
instTopENNReal
β€”NNReal.coe_pos
toNNReal_pos_iff
toReal_pos_iff_ne_top πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
toReal
β€”LT.lt.ne
toReal_top
LT.lt.trans_le
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
dichotomy
toReal_pow πŸ“–mathematicalβ€”toReal
ENNReal
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
instCommSemiring
Real
Real.instMonoid
β€”MonoidHom.map_pow
toReal_strict_mono πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
Real
Real.instLT
toReal
β€”toReal_lt_toReal
LT.lt.ne_top
toReal_sup πŸ“–mathematicalβ€”toReal
ENNReal
instMax
Real
Real.instMax
β€”toReal_max
toReal_top_mul πŸ“–mathematicalβ€”toReal
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
Top.top
instTopENNReal
Real
Real.instZero
β€”mul_comm
toReal_mul_top
trichotomy πŸ“–mathematicalβ€”ENNReal
instZeroENNReal
Top.top
instTopENNReal
Real
Real.instLT
Real.instZero
toReal
β€”toReal_pos
trichotomyβ‚‚ πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instZeroENNReal
Top.top
instTopENNReal
Real
Real.instLT
Real.instZero
toReal
Real.instLE
β€”eq_or_lt_of_le
bot_le
trichotomy
le_top
lt_of_lt_of_le
lt_of_le_of_lt
toReal_mono
LT.lt.ne
zero_eq_ofReal πŸ“–mathematicalβ€”ENNReal
instZeroENNReal
ofReal
Real
Real.instLE
Real.instZero
β€”ofReal_eq_zero

Mathlib.Meta.Positivity

Definitions

NameCategoryTheorems
evalENNRealOfReal πŸ“–CompOpβ€”

---

← Back to Index