Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Data/ENat/Basic.lean

Statistics

MetricCount
DefinitionsENatMap, ENatMap, instSuccAddOrder, instUniqueUnits, instWellFoundedRelation, map, toNat, toNatHom, ENatMap, ENatMap, ENatMap, ENatMap, instBotENat, instCanonicallyOrderedAddENat, instCharZeroENat, instCommSemiringENat, instIsOrderedRingENat, instLinearOrderENat, instLinearOrderedAddCommMonoidWithTopENat, instNoZeroDivisorsENat, instNontrivialENat, instOrderBotENat, instOrderTopENat, instOrderedSubENat, instSubENat, instSuccOrderENat, instWellFoundedLTENat, instZeroENat
28
TheoremsENatMap_apply, ENatMap_apply, addLECancellable_coe, addLECancellable_of_lt_top, addLECancellable_of_ne_top, add_le_add_iff_left, add_le_add_iff_right, add_left_injective_of_ne_top, add_lt_add_iff_left, add_lt_add_iff_right, add_lt_top, add_one_eq_coe_top_iff, add_one_le_iff, add_one_natCast_le_withTop_of_lt, add_one_pos, add_right_injective_of_ne_top, canLift, coe_add, coe_inj, coe_le_coe, coe_lift, coe_lt_coe, coe_lt_top, coe_mul, coe_ne_top, coe_one, coe_sub, coe_toNat, coe_toNatHom, coe_toNat_eq_self, coe_toNat_le_self, coe_top_add_one, coe_zero, eq_of_forall_natCast_le_iff, eq_top_iff_forall_ge, eq_top_iff_forall_gt, eq_top_iff_forall_ne, eq_top_of_pow, exists_nat_gt, exists_ne_top, forall_natCast_le_iff_le, forall_ne_top, le_coe_iff, le_lift_iff, le_sub_of_add_le_left, le_sub_of_add_le_right, le_sub_one_of_lt, lift_add, lift_coe, lift_eq_toNat_of_lt_top, lift_le_iff, lift_lt_iff, lift_ofNat, lift_one, lift_zero, lt_add_one_iff, lt_add_one_iff', lt_coe_add_one_iff, lt_lift_iff, lt_one_iff_eq_zero, map_add, map_coe, map_eq_top_iff, map_natCast_eq_zero, map_natCast_inj, map_natCast_injective, map_natCast_mul, map_natCast_nonneg, map_natCast_strictMono, map_ofNat, map_one, map_top, map_zero, monotone_map_iff, mul_le_mul_left_iff, mul_le_mul_of_le_right, mul_le_mul_right_iff, mul_left_strictMono, mul_right_strictMono, mul_top, mul_top', natCast_le_of_coe_top_le_withTop, natCast_lt_of_coe_top_le_withTop, natCast_lt_succ, natCast_ne_coe_top, nat_induction, ne_top_iff_exists, not_lt_zero, ofNat_ne_top, one_le_iff_ne_zero, one_le_iff_ne_zero_withTop, one_lt_top, one_ne_top, pow_eq_top_iff, pow_lt_top_iff, pow_ne_top_iff, recTopCoe_ofNat, recTopCoe_one, recTopCoe_zero, self_le_mul_left, self_le_mul_right, some_eq_coe, strictMono_map_iff, sub_eq_top_iff, sub_ne_top_iff, sub_sub_cancel, sub_top, succ_def, toNatHom_apply, toNat_add, toNat_coe, toNat_eq_iff, toNat_eq_iff_eq_coe, toNat_eq_zero, toNat_le_of_le_coe, toNat_le_toNat, toNat_mul, toNat_ofNat, toNat_one, toNat_sub, toNat_top, toNat_zero, top_mul, top_mul', top_ne_coe, top_ne_ofNat, top_ne_one, top_ne_zero, top_pos, top_pow, top_sub_coe, top_sub_ofNat, top_sub_one, zero_ne_top, ENatMap_apply, ENatMap_apply, add_one_le_iff, lt_add_one_iff
138
Total166

AddHom

Definitions

NameCategoryTheorems
ENatMap πŸ“–CompOp
1 mathmath: ENatMap_apply

Theorems

NameKindAssumesProvesValidatesDepends On
ENatMap_apply πŸ“–mathematicalβ€”DFunLike.coe
AddHom
ENat
WithTop
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
WithTop.add
funLike
ENatMap
ENat.map
β€”β€”

AddMonoidHom

Definitions

NameCategoryTheorems
ENatMap πŸ“–CompOp
1 mathmath: ENatMap_apply

Theorems

NameKindAssumesProvesValidatesDepends On
ENatMap_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
ENat
WithTop
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
WithTop.addZeroClass
instFunLike
ENatMap
ENat.map
Nat.instAddMonoid
β€”β€”

ENat

Definitions

NameCategoryTheorems
instSuccAddOrder πŸ“–CompOpβ€”
instUniqueUnits πŸ“–CompOpβ€”
instWellFoundedRelation πŸ“–CompOpβ€”
map πŸ“–CompOp
21 mathmath: map_natCast_inj, map_one, monotone_map_iff, AnalyticAt.meromorphicOrderAt_eq, map_coe_nnreal, map_natCast_eq_zero, map_natCast_strictMono, AddHom.ENatMap_apply, map_top, map_eq_top_iff, map_natCast_mul, map_natCast_injective, AddMonoidHom.ENatMap_apply, map_ofNat, map_natCast_nonneg, map_coe, map_add, strictMono_map_iff, map_zero, MonoidWithZeroHom.ENatMap_apply, MeromorphicAt.meromorphicOrderAt_comp
toNat πŸ“–CompOp
46 mathmath: Cardinal.toNat_ofENat, toNat_one, PowerSeries.degree_weierstrassMod_lt, Set.ncard_def, iInf_toNat, SimpleGraph.colorable_chromaticNumber, toNat_zero, PowerSeries.IsWeierstrassFactorization.isWeierstrassDivision, PowerSeries.IsWeierstrassDivisionAt.degree_lt, PowerSeries.IsWeierstrassFactorizationAt.natDegree_eq_toNat_order_map_of_ne_top, coe_toNat_le_self, toNat_eq_iff, coe_toNat, Matrix.eRank_toNat_eq_finrank, MvPowerSeries.ne_zero_iff_weightedOrder_finite, PowerSeries.IsWeierstrassFactorization.natDegree_eq_toNat_order_map, coe_toNatHom, toNat_ofNat, PowerSeries.coe_toNat_order, toNatHom_apply, PowerSeries.IsWeierstrassDivisorAt.isUnit_shift, coe_toNat_eq_self, PowerSeries.constantCoeff_divXPowOrder, toNat_le_toNat, Cardinal.toNat_toENat, toNat_le_of_le_coe, toNat_mul, SimpleGraph.diam_def, Set.Finite.encard_eq_coe, PowerSeries.X_pow_order_dvd, PowerSeries.coeff_divXPowOrder, lift_eq_toNat_of_lt_top, MvPowerSeries.ne_zero_iff_order_finite, toNat_eq_zero, toNat_add, PowerSeries.isWeierstrassDivisionAt_iff, toNat_coe, Matrix.eRank_toNat_eq_rank, PowerSeries.X_pow_order_mul_divXPowOrder, toNat_eq_iff_eq_coe, toNat_sub, toNat_top, SimpleGraph.colorable_chromaticNumber_of_fintype, MvPowerSeries.le_weightedOrder_subst_of_forall_ne_zero, PowerSeries.IsWeierstrassDivisorAt.seq_one, SimpleGraph.colorable_of_chromaticNumber_ne_top
toNatHom πŸ“–CompOp
2 mathmath: coe_toNatHom, toNatHom_apply

Theorems

NameKindAssumesProvesValidatesDepends On
addLECancellable_coe πŸ“–mathematicalβ€”AddLECancellable
ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
instNatCast
β€”WithTop.addLECancellable_coe
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
addLECancellable_of_lt_top πŸ“–mathematicalENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Top.top
instTopENat
AddLECancellable
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Preorder.toLE
β€”WithTop.addLECancellable_of_lt_top
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
addLECancellable_of_ne_top πŸ“–mathematicalβ€”AddLECancellable
ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
β€”WithTop.addLECancellable_of_ne_top
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
add_le_add_iff_left πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”WithTop.add_le_add_iff_left
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
add_le_add_iff_right πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”WithTop.add_le_add_iff_right
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
add_left_injective_of_ne_top πŸ“–mathematicalβ€”ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”le_antisymm
WithTop.add_le_add_iff_right
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Eq.le
Eq.ge
add_lt_add_iff_left πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”WithTop.add_lt_add_iff_left
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_lt_of_covariant_le
add_lt_add_iff_right πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”WithTop.add_lt_add_iff_right
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
add_lt_top πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Top.top
instTopENat
β€”WithTop.add_lt_top
add_one_eq_coe_top_iff πŸ“–mathematicalβ€”WithTop
ENat
WithTop.add
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
WithTop.one
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
WithTop.some
Top.top
instTopENat
β€”Nat.cast_one
Nat.cast_add
add_one_le_iff πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Preorder.toLT
β€”Order.add_one_le_iff_of_not_isMax
not_isMax_iff_ne_top
add_one_natCast_le_withTop_of_lt πŸ“–mathematicalWithTop
ENat
Preorder.toLT
WithTop.instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
AddMonoidWithOne.toNatCast
WithTop.addMonoidWithOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Preorder.toLEβ€”le_top
WithTop.coe_le_coe
OrderTop.le_top
WithTop.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
WithTop.zeroLEOneClass
IsOrderedRing.toZeroLEOneClass
WithTop.charZero
add_one_pos πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
instZeroENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”Order.bot_lt_succ
succ_def
add_right_injective_of_ne_top πŸ“–mathematicalβ€”ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”add_comm
add_left_injective_of_ne_top
canLift πŸ“–mathematicalβ€”CanLift
ENat
instNatCast
Top.top
instTopENat
β€”WithTop.canLift
coe_add πŸ“–mathematicalβ€”ENat
instNatCast
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”β€”
coe_inj πŸ“–mathematicalβ€”ENat
instNatCast
β€”β€”
coe_le_coe πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
instNatCast
β€”IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
coe_lift πŸ“–mathematicalENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Top.top
instTopENat
instNatCast
lift
β€”WithTop.coe_untop
WithTop.lt_top_iff_ne_top
coe_lt_coe πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
instNatCast
β€”IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
coe_lt_top πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
instNatCast
Top.top
instTopENat
β€”WithTop.coe_lt_top
coe_mul πŸ“–mathematicalβ€”ENat
instNatCast
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”β€”
coe_ne_top πŸ“–β€”β€”β€”β€”β€”
coe_one πŸ“–mathematicalβ€”ENat
instNatCast
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”β€”
coe_sub πŸ“–mathematicalβ€”ENat
instNatCast
instSubENat
β€”β€”
coe_toNat πŸ“–mathematicalβ€”ENat
instNatCast
toNat
β€”coe_toNat_eq_self
coe_toNatHom πŸ“–mathematicalβ€”DFunLike.coe
MonoidWithZeroHom
ENat
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
toNatHom
toNat
β€”β€”
coe_toNat_eq_self πŸ“–mathematicalβ€”ENat
instNatCast
toNat
β€”β€”
coe_toNat_le_self πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
instNatCast
toNat
β€”le_top
le_rfl
coe_top_add_one πŸ“–mathematicalβ€”WithTop
ENat
WithTop.add
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
WithTop.some
Top.top
instTopENat
WithTop.one
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”β€”
coe_zero πŸ“–mathematicalβ€”ENat
instNatCast
instZeroENat
β€”β€”
eq_of_forall_natCast_le_iff πŸ“–β€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
instNatCast
β€”β€”WithTop.eq_of_forall_coe_le_iff
instNoTopOrderOfNoMaxOrder
Nat.instNoMaxOrder
eq_top_iff_forall_ge πŸ“–mathematicalβ€”Top.top
ENat
instTopENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
instNatCast
β€”WithTop.eq_top_iff_forall_ge
instNoTopOrderOfNoMaxOrder
Nat.instNoMaxOrder
eq_top_iff_forall_gt πŸ“–mathematicalβ€”Top.top
ENat
instTopENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
instNatCast
β€”WithTop.eq_top_iff_forall_gt
eq_top_iff_forall_ne πŸ“–mathematicalβ€”Top.top
ENat
instTopENat
β€”WithTop.eq_top_iff_forall_ne
eq_top_of_pow πŸ“–β€”ENat
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
instCommSemiringENat
Top.top
instTopENat
β€”β€”WithTop.eq_top_of_pow
IsDomain.to_noZeroDivisors
Nat.instIsDomain
Nat.instNontrivial
exists_nat_gt πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
instNatCast
β€”Function.mt
eq_top_iff_forall_ge
exists_ne_top πŸ“–mathematicalβ€”ENat
instNatCast
β€”WithTop.exists_ne_top
forall_natCast_le_iff_le πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
instNatCast
β€”WithTop.forall_coe_le_iff_le
instNoTopOrderOfNoMaxOrder
Nat.instNoMaxOrder
forall_ne_top πŸ“–mathematicalβ€”ENat
instNatCast
β€”WithTop.forall_ne_top
le_coe_iff πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
instNatCast
β€”WithTop.le_coe_iff
le_lift_iff πŸ“–mathematicalENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Top.top
instTopENat
lift
Preorder.toLE
instNatCast
β€”WithTop.le_untop_iff
le_sub_of_add_le_left πŸ“–mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
instSubENatβ€”AddLECancellable.le_tsub_of_add_le_left
addLECancellable_of_ne_top
le_sub_of_add_le_right πŸ“–mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
instSubENatβ€”AddLECancellable.le_tsub_of_add_le_right
addLECancellable_of_ne_top
le_sub_one_of_lt πŸ“–mathematicalENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Preorder.toLE
instSubENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”le_sub_of_add_le_right
one_ne_top
lt_coe_add_one_iff
lt_tsub_iff_right
lift_add πŸ“–mathematicalENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Top.top
instTopENat
lift
add_lt_top
β€”add_lt_top
coe_lift
Nat.cast_add
lift_coe πŸ“–mathematicalβ€”lift
ENat
instNatCast
WithTop.coe_lt_top
β€”WithTop.coe_lt_top
lift_eq_toNat_of_lt_top πŸ“–mathematicalENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Top.top
instTopENat
lift
toNat
β€”β€”
lift_le_iff πŸ“–mathematicalENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Top.top
instTopENat
lift
Preorder.toLE
instNatCast
β€”WithTop.untop_le_iff
lift_lt_iff πŸ“–mathematicalENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Top.top
instTopENat
lift
instNatCast
β€”WithTop.untop_lt_iff
lift_ofNat πŸ“–mathematicalβ€”lift
WithTop.coe_lt_top
β€”WithTop.coe_lt_top
lift_one πŸ“–mathematicalβ€”lift
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
WithTop.coe_lt_top
Preorder.toLT
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Nat.instLinearOrder
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
Nat.instCommSemiring
β€”WithTop.coe_lt_top
lift_zero πŸ“–mathematicalβ€”lift
ENat
instZeroENat
WithTop.coe_lt_top
Preorder.toLT
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Nat.instLinearOrder
MulZeroClass.toZero
Nat.instMulZeroClass
β€”WithTop.coe_lt_top
lt_add_one_iff πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Preorder.toLE
β€”Order.lt_add_one_iff_of_not_isMax
not_isMax_iff_ne_top
lt_add_one_iff' πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Preorder.toLE
β€”add_one_le_iff
add_le_add_iff_right
one_ne_top
lt_coe_add_one_iff πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
instNatCast
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Preorder.toLE
β€”lt_add_one_iff
coe_ne_top
lt_lift_iff πŸ“–mathematicalENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Top.top
instTopENat
lift
instNatCast
β€”WithTop.lt_untop_iff
lt_one_iff_eq_zero πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
instZeroENat
β€”not_le
Iff.not_left
one_le_iff_ne_zero
map_add πŸ“–mathematicalβ€”map
DFunLike.coe
ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
WithTop
WithTop.add
β€”WithTop.map_add
map_coe πŸ“–mathematicalβ€”map
ENat
instNatCast
WithTop.some
β€”β€”
map_eq_top_iff πŸ“–mathematicalβ€”map
Top.top
WithTop
WithTop.top
ENat
instTopENat
β€”WithTop.map_eq_top_iff
map_natCast_eq_zero πŸ“–mathematicalβ€”map
AddMonoidWithOne.toNatCast
WithTop
WithTop.zero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
ENat
instZeroENat
β€”Nat.cast_zero
map_natCast_inj πŸ“–mathematicalβ€”map
AddMonoidWithOne.toNatCast
β€”map_natCast_injective
map_natCast_injective πŸ“–mathematicalβ€”ENat
WithTop
map
AddMonoidWithOne.toNatCast
β€”StrictMono.injective
map_natCast_strictMono
map_natCast_mul πŸ“–mathematicalβ€”map
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
ENat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
WithTop
MulZeroClass.toMul
WithTop.instMulZeroClass
NonUnitalNonAssocSemiring.toMulZeroClass
β€”map_mul
instNontrivialOfCharZero
MonoidHomClass.toMulHomClass
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Nat.cast_injective
map_natCast_nonneg πŸ“–mathematicalβ€”WithTop
Preorder.toLE
WithTop.instPreorder
PartialOrder.toPreorder
WithTop.zero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
map
AddMonoidWithOne.toNatCast
β€”WithTop.addLeftMono
WithTop.zeroLEOneClass
map_natCast_strictMono πŸ“–mathematicalβ€”StrictMono
ENat
WithTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
WithTop.instPreorder
map
AddMonoidWithOne.toNatCast
β€”strictMono_map_iff
Nat.strictMono_cast
map_ofNat πŸ“–mathematicalβ€”map
WithTop.some
β€”β€”
map_one πŸ“–mathematicalβ€”map
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
WithTop.some
β€”β€”
map_top πŸ“–mathematicalβ€”map
Top.top
ENat
instTopENat
WithTop
WithTop.top
β€”β€”
map_zero πŸ“–mathematicalβ€”map
ENat
instZeroENat
WithTop.some
β€”β€”
monotone_map_iff πŸ“–mathematicalβ€”Monotone
ENat
WithTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
WithTop.instPreorder
map
Nat.instPreorder
β€”WithTop.monotone_map_iff
mul_le_mul_left_iff πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”StrictMono.le_iff_le
mul_right_strictMono
mul_le_mul_of_le_right πŸ“–mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”β€”
mul_le_mul_right_iff πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”StrictMono.le_iff_le
mul_left_strictMono
mul_left_strictMono πŸ“–mathematicalβ€”StrictMono
ENat
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”WithTop.mul_left_strictMono
IsStrictOrderedRing.toMulPosStrictMono
Nat.instIsStrictOrderedRing
pos_iff_ne_zero
WithTop.canonicallyOrderedAdd
Nat.instCanonicallyOrderedAdd
mul_right_strictMono πŸ“–mathematicalβ€”StrictMono
ENat
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”WithTop.mul_right_strictMono
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
pos_iff_ne_zero
WithTop.canonicallyOrderedAdd
Nat.instCanonicallyOrderedAdd
mul_top πŸ“–mathematicalβ€”ENat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Top.top
instTopENat
β€”WithTop.mul_top
mul_top' πŸ“–mathematicalβ€”ENat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Top.top
instTopENat
instZeroENat
LinearOrder.toDecidableEq
instLinearOrderENat
β€”WithTop.mul_top'
natCast_le_of_coe_top_le_withTop πŸ“–mathematicalWithTop
ENat
Preorder.toLE
WithTop.instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
WithTop.some
Top.top
instTopENat
AddMonoidWithOne.toNatCast
WithTop.addMonoidWithOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”le_trans
le_top
natCast_lt_of_coe_top_le_withTop πŸ“–mathematicalWithTop
ENat
Preorder.toLE
WithTop.instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
WithTop.some
Top.top
instTopENat
Preorder.toLT
AddMonoidWithOne.toNatCast
WithTop.addMonoidWithOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”lt_of_lt_of_le
WithTop.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
WithTop.zeroLEOneClass
IsOrderedRing.toZeroLEOneClass
WithTop.charZero
lt_add_one
Nat.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Nat.instIsOrderedAddMonoid
natCast_le_of_coe_top_le_withTop
natCast_lt_succ πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
instNatCast
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”Nat.cast_one
Nat.cast_add
coe_lt_coe
lt_add_one
Nat.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
natCast_ne_coe_top πŸ“–β€”β€”β€”β€”β€”
nat_induction πŸ“–β€”ENat
instZeroENat
instNatCast
Top.top
instTopENat
β€”β€”β€”
ne_top_iff_exists πŸ“–mathematicalβ€”ENat
instNatCast
β€”WithTop.ne_top_iff_exists
not_lt_zero πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
instZeroENat
β€”not_lt_zero
ofNat_ne_top πŸ“–β€”β€”β€”β€”β€”
one_le_iff_ne_zero πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”Order.one_le_iff_pos
IsOrderedRing.toZeroLEOneClass
NeZero.one
pos_iff_ne_zero
one_le_iff_ne_zero_withTop πŸ“–mathematicalβ€”WithTop
ENat
Preorder.toLE
WithTop.instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
WithTop.one
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”LT.lt.ne'
LT.lt.trans_le
zero_lt_one
WithTop.zeroLEOneClass
IsOrderedRing.toZeroLEOneClass
NeZero.one
WithTop.nontrivial
add_one_natCast_le_withTop_of_lt
pos_iff_ne_zero
WithTop.canonicallyOrderedAdd
one_lt_top πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Top.top
instTopENat
β€”WithTop.one_lt_top
one_ne_top πŸ“–β€”β€”β€”β€”β€”
pow_eq_top_iff πŸ“–mathematicalβ€”ENat
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
instCommSemiringENat
Top.top
instTopENat
β€”WithTop.pow_eq_top_iff
IsDomain.to_noZeroDivisors
Nat.instIsDomain
Nat.instNontrivial
pow_lt_top_iff πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
instCommSemiringENat
Top.top
instTopENat
β€”WithTop.pow_lt_top_iff
IsDomain.to_noZeroDivisors
Nat.instIsDomain
Nat.instNontrivial
pow_ne_top_iff πŸ“–β€”β€”β€”β€”WithTop.pow_ne_top_iff
IsDomain.to_noZeroDivisors
Nat.instIsDomain
Nat.instNontrivial
recTopCoe_ofNat πŸ“–mathematicalβ€”recTopCoeβ€”β€”
recTopCoe_one πŸ“–mathematicalβ€”recTopCoe
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”β€”
recTopCoe_zero πŸ“–mathematicalβ€”recTopCoe
ENat
instZeroENat
β€”β€”
self_le_mul_left πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”mul_comm
self_le_mul_right
self_le_mul_right πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”eq_or_ne
top_mul
MulZeroClass.zero_mul
mul_one
mul_le_mul_left_iff
one_le_iff_ne_zero
some_eq_coe πŸ“–mathematicalβ€”WithTop.some
WithTop
AddMonoidWithOne.toNatCast
WithTop.addMonoidWithOne
Nat.instAddMonoidWithOne
β€”β€”
strictMono_map_iff πŸ“–mathematicalβ€”StrictMono
ENat
WithTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
WithTop.instPreorder
map
Nat.instPreorder
β€”WithTop.strictMono_map_iff
sub_eq_top_iff πŸ“–mathematicalβ€”ENat
instSubENat
Top.top
instTopENat
β€”WithTop.sub_eq_top_iff
sub_ne_top_iff πŸ“–mathematicalβ€”Top.top
ENat
instTopENat
β€”WithTop.sub_ne_top_iff
sub_sub_cancel πŸ“–mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
instSubENatβ€”AddLECancellable.tsub_tsub_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
addLECancellable_of_ne_top
ne_top_of_le_ne_top
tsub_le_self
sub_top πŸ“–mathematicalβ€”ENat
instSubENat
Top.top
instTopENat
instZeroENat
β€”WithTop.sub_top
succ_def πŸ“–mathematicalβ€”Order.succ
ENat
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
instSuccOrderENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”Order.succ_eq_add_one
toNatHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidWithZeroHom
ENat
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
toNatHom
instNatCast
toNat
β€”β€”
toNat_add πŸ“–mathematicalβ€”toNat
ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”CanLift.prf
canLift
toNat_coe πŸ“–mathematicalβ€”toNat
ENat
instNatCast
β€”β€”
toNat_eq_iff πŸ“–mathematicalβ€”toNat
ENat
instNatCast
β€”β€”
toNat_eq_iff_eq_coe πŸ“–mathematicalβ€”toNat
ENat
instNatCast
β€”β€”
toNat_eq_zero πŸ“–mathematicalβ€”toNat
ENat
instZeroENat
Top.top
instTopENat
β€”WithTop.untopD_eq_self_iff
toNat_le_of_le_coe πŸ“–mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
instNatCast
toNatβ€”CanLift.prf
canLift
ne_top_of_le_ne_top
coe_ne_top
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
toNat_le_toNat πŸ“–mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
toNatβ€”toNat_le_of_le_coe
LE.le.trans_eq
coe_toNat
toNat_mul πŸ“–mathematicalβ€”toNat
ENat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”mul_top
MulZeroClass.mul_zero
Nat.cast_zero
Nat.cast_add
Nat.cast_one
top_mul
Unique.instSubsingleton
NeZero.one
MulZeroClass.zero_mul
coe_mul
toNat_coe
toNat_ofNat πŸ“–mathematicalβ€”toNatβ€”β€”
toNat_one πŸ“–mathematicalβ€”toNat
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”β€”
toNat_sub πŸ“–mathematicalβ€”toNat
ENat
instSubENat
β€”CanLift.prf
canLift
top_sub_coe
toNat_top
zero_tsub
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
coe_sub
toNat_coe
toNat_top πŸ“–mathematicalβ€”toNat
Top.top
ENat
instTopENat
β€”β€”
toNat_zero πŸ“–mathematicalβ€”toNat
ENat
instZeroENat
β€”β€”
top_mul πŸ“–mathematicalβ€”ENat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Top.top
instTopENat
β€”WithTop.top_mul
top_mul' πŸ“–mathematicalβ€”ENat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Top.top
instTopENat
instZeroENat
LinearOrder.toDecidableEq
instLinearOrderENat
β€”WithTop.top_mul'
top_ne_coe πŸ“–β€”β€”β€”β€”β€”
top_ne_ofNat πŸ“–β€”β€”β€”β€”β€”
top_ne_one πŸ“–β€”β€”β€”β€”β€”
top_ne_zero πŸ“–β€”β€”β€”β€”β€”
top_pos πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
instZeroENat
Top.top
instTopENat
β€”WithTop.top_pos
top_pow πŸ“–mathematicalβ€”ENat
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
instCommSemiringENat
Top.top
instTopENat
β€”WithTop.top_pow
IsDomain.to_noZeroDivisors
Nat.instIsDomain
Nat.instNontrivial
top_sub_coe πŸ“–mathematicalβ€”ENat
instSubENat
Top.top
instTopENat
instNatCast
β€”β€”
top_sub_ofNat πŸ“–mathematicalβ€”ENat
instSubENat
Top.top
instTopENat
β€”β€”
top_sub_one πŸ“–mathematicalβ€”ENat
instSubENat
Top.top
instTopENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”β€”
zero_ne_top πŸ“–β€”β€”β€”β€”β€”

MonoidWithZeroHom

Definitions

NameCategoryTheorems
ENatMap πŸ“–CompOp
2 mathmath: RingHom.ENatMap_apply, ENatMap_apply

Theorems

NameKindAssumesProvesValidatesDepends On
ENatMap_apply πŸ“–mathematicalDFunLike.coe
MonoidWithZeroHom
Nat.instMulZeroOneClass
funLike
ENat
WithTop
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
WithTop.instMulZeroOneClass
ENatMap
ENat.map
β€”β€”

OneHom

Definitions

NameCategoryTheorems
ENatMap πŸ“–CompOpβ€”

RingHom

Definitions

NameCategoryTheorems
ENatMap πŸ“–CompOp
1 mathmath: ENatMap_apply

Theorems

NameKindAssumesProvesValidatesDepends On
ENatMap_apply πŸ“–mathematicalDFunLike.coe
RingHom
Nat.instNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instFunLike
ENat
WithTop
instCommSemiringENat
WithTop.instNonAssocSemiring
ENatMap
ZeroHom.toFun
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
NonAssocSemiring.toMulZeroOneClass
WithTop.instMulZeroOneClass
MonoidWithZeroHom.toZeroHom
MonoidWithZeroHom.ENatMap
toMonoidWithZeroHom
β€”β€”

WithBot

Theorems

NameKindAssumesProvesValidatesDepends On
add_one_le_iff πŸ“–mathematicalβ€”WithBot
ENat
Preorder.toLE
instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
add
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
AddMonoidWithOne.toNatCast
addMonoidWithOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
one
AddMonoidWithOne.toOne
Preorder.toLT
β€”coe_one
ENat.coe_one
coe_natCast
Nat.cast_add
Nat.cast_one
coe_le_coe
ENat.coe_add
ENat.add_one_le_iff
ENat.coe_ne_top
coe_lt_coe
lt_add_one_iff πŸ“–mathematicalβ€”WithBot
ENat
Preorder.toLT
instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
add
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
AddMonoidWithOne.toNatCast
addMonoidWithOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
one
AddMonoidWithOne.toOne
Preorder.toLE
β€”coe_one
ENat.coe_one
coe_natCast
Nat.cast_add
coe_lt_coe
ENat.lt_add_one_iff
ENat.coe_ne_top
coe_le_coe

ZeroHom

Definitions

NameCategoryTheorems
ENatMap πŸ“–CompOpβ€”

(root)

Definitions

NameCategoryTheorems
instBotENat πŸ“–CompOpβ€”
instCanonicallyOrderedAddENat πŸ“–CompOp
5 mathmath: Order.krullDim_le_of_krullDim_preimage_le, tangentBundleCore.isContMDiff, TangentBundle.contMDiffVectorBundle, Polynomial.ringKrullDim_le, Order.krullDim_le_of_krullDim_preimage_le'
instCharZeroENat πŸ“–CompOpβ€”
instCommSemiringENat πŸ“–CompOp
559 mathmath: TangentBundle.continuousLinearMapAt_model_space, Order.coheight_add_one_le, ENat.add_lt_top, Cardinal.natCast_lt_toENat_iff, instContMDiffVectorBundleOfNatWithTopENatTangentSpaceOfIsManifold, Topology.RelCWComplex.skeletonLT_union_iUnion_closedCell_eq_skeletonLT_succ, instLieAddGroupOfNatWithTopENat, Nat.Prime.emultiplicity_choose_prime_pow_add_emultiplicity, Order.LTSeries.length_le_krullDim, SimpleGraph.vertexCoverNum_le_card_sub_one, ringKrullDim_quotient_span_singleton_succ_eq_ringKrullDim, ENat.lt_add_one_iff', ringKrullDim_succ_le_ringKrullDim_polynomial, Set.toENat_cardinalMk_subtype, ENat.self_le_mul_left, instIsContMDiffRiemannianBundleOfNatWithTopENat_1, Cardinal.toENat_eq_natCast_iff, Order.krullDim_lt_coe_iff, ENat.toNat_one, Set.encard_diff_add_encard, ENat.coe_one, contMDiffWithinAt_vectorSpace_iff_contDiffWithinAt, ENat.card_prod, Set.encard_union_eq, ENat.iInf_mul_of_ne, Set.encard_prod, CategoryTheory.injectiveDimension_le_iff, MvPowerSeries.le_order_mul, LinearMap.IsSymmetric.diagonalization_apply_self_apply, PartENat.ofENat_one, Cardinal.toENat_ofENat, Matroid.eRk_singleton_le, ENat.ceil_add_ofNat, Ring.krullDimLE_iff, ringKrullDim_eq_one_iff_of_isLocalRing_isDomain, contMDiff_addInvariantVectorField, Cardinal.one_eq_ofENat, Module.length_of_free, PowerSeries.order_expand, ENat.iSup_add_iSup_of_monotone, ENat.natCast_le_of_coe_top_le_withTop, Order.height_add_one_le, ENat.one_lt_card_iff_nontrivial, ENat.map_one, Matroid.eRank_le_encard_add_eRk_compl, ENat.floor_add_ofNat, PartENat.withTopEquiv_one, contMDiff_mulInvariantVectorField, ENat.coe_top_add_one, Order.krullDim_le_one_iff, Module.supportDim_add_length_eq_supportDim_of_isRegular, Dynamics.coverMincard_univ, contDiff_one_iff_fderiv, contMDiff_equivTangentBundleProd_symm, Submodule.spanRank_toENat_eq_iInf_encard, Real.contDiffAt_rpow_const_of_le, ENat.ceil_add_natCast, Ideal.height_eq_height_add_of_liesOver_of_hasGoingDown, LinearMap.IsSymmetric.directSum_decompose_apply, MvPowerSeries.le_weightedOrder_mul, contMDiff_infty, Cardinal.toENat_eq_zero, contDiffOn_nat_iff_continuousOn_differentiableOn_deriv, MvPowerSeries.le_order_prod, ENat.floor_add_one, Order.le_krullDim_iff, Cardinal.toENat_eq_ofNat, PowerSeries.order_mul_ge, Set.encard_union_add_encard_inter, ENat.floor_add_natCast, WithBot.lt_add_one_iff, contDiffWithinAt_nat, ringKrullDim_quotSMulTop_succ_eq_ringKrullDim_of_mem_jacobson, Matroid.IsNonloop.eRk_eq, ENat.mul_iSup, ringKrullDim_succ_le_ringKrullDim_powerseries, contDiffOn_infty, Polynomial.height_eq_height_add_one, MvPowerSeries.le_weightedOrder_prod, Dynamics.one_le_coverMincard_iff, tangentBundle_model_space_coe_chartAt, ENat.ceil_sub_one, contDiff_iff_forall_nat_le, Nat.Prime.emultiplicity_le_emultiplicity_choose_add, ENat.epow_natCast, contDiff_succ_iff_fderiv, contMDiffAt_mulInvariantVectorField, IsContDiffImplicitAt.one_le, ENat.biSup_add', FiniteMultiplicity.emultiplicity_self, MvPowerSeries.weightedOrder_mul, ENat.sum_iSup, ringKrullDim_quotSMulTop_succ_eq_ringKrullDim, Topology.RelCWComplex.iUnion_openCell_eq_skeleton, Dynamics.netMaxcard_zero, ENat.iInf_mul', Nat.two_pow_sub_pow, ENat.add_right_injective_of_ne_top, mdifferentiableAt_addInvariantVectorField, Matroid.eRk_dual_add_eRank', Nat.Prime.emultiplicity_factorial_mul, ENat.one_le_card_iff_nonempty, AddHom.ENatMap_apply, contDiffAt_one_iff, Order.coheight_eq_coe_add_one_iff, Mathlib.Tactic.ENatToNat.coe_mul, ENat.card_le_one_iff_subsingleton, Cardinal.toENat_lt_natCast_iff, Metric.externalCoveringNumber_le_one_of_ediam_le, SimpleGraph.eccent_le_one_iff, ENat.lift_one, Matroid.eRk_le_eRk_add_eRk_diff, contDiff_all_iff_nat, Set.encard_union_le, contDiffOn_succ_of_fderivWithin, IsPrincipalIdealRing.height_eq_one_of_isMaximal, emultiplicity_pow_prime_pow_sub_pow_prime_pow, ENat.epow_mul, Cardinal.toENat_lift, Matroid.eRk_compl_insert_union_add_eRk_compl_insert_inter_le, ENat.add_one_le_iff, Int.emultiplicity_pow_sub_pow, Stream'.Seq.length'_cons, SimpleGraph.edist_top, MvPowerSeries.one_le_order_iff_constCoeff_eq_zero, SimpleGraph.vertexCoverNum_top, mdifferentiable_mulInvariantVectorField, Nat.emultiplicity_pow_add_pow, ENat.iInf_mul, Cardinal.toENat_le_ofNat, Matroid.eRk_insert_le_add_one, Ideal.height_le_height_add_of_liesOver, ENat.epow_add, MvPowerSeries.le_order_subst, MvPowerSeries.le_weightedOrder_pow, ENat.add_iSup, Module.End.hasUnifEigenvalue_iff_mem_spectrum, CategoryTheory.injectiveDimension_ge_iff, contDiffOn_nat_iff_continuousOn_differentiableOn, Ideal.height_le_height_add_one_of_mem, ENat.mul_sSup, Module.supportDim_quotSMulTop_succ_eq_of_notMem_minimalPrimes_of_mem_maximalIdeal, Matroid.exists_eRk_insert_eq_add_one_of_lt, Module.End.Eigenvalues.mk_val, LinearMap.IsSymmetric.diagonalization_symm_apply, Matroid.eRk_inter_add_eRk_union_le, Module.End.genEigenspace_inf_le_add, contMDiff_vectorSpace_iff_contDiff, ringKrullDim_succ_le_of_surjective, ENat.top_sub_one, ENat.instContinuousMul, TangentBundle.coordChange_model_space, Matroid.eRk_dual_add_eRank, Cardinal.one_le_ofENat, Ideal.height_le_spanRank_toENat_of_mem_minimal_primes, instContMDiffInvβ‚€OfNatWithTopENat, CategoryTheory.projectiveDimension_lt_iff, Metric.coveringNumber_eq_one_of_ediam_le, RingHom.ENatMap_apply, ContDiffMapSupportedIn.iteratedFDerivWithOrderLM_apply, Set.encard_diff_add_encard_of_subset, SimpleGraph.chromaticNumber_eq_iff_colorable_not_colorable, Topology.RelCWComplex.openCell_subset_skeletonLT, Topology.RelCWComplex.closedCell_subset_skeletonLT, PowerSeries.le_order_mul, ENat.instContinuousAdd, contDiffOn_succ_iff_fderiv_of_isOpen, ENat.mul_le_mul_of_le_right, ENat.map_natCast_mul, hasFTaylorSeriesUpToOn_succ_iff_right, ENat.add_sSup, PartENat.toWithTop_add, IsDiscreteValuationRing.addVal_uniformizer, contDiff_nat_iff_iteratedDeriv, Cardinal.ofENat_add, ENat.coe_mul, instIsManifoldMinSmoothnessOfNatWithTopENat_1, ENat.ceil_add_le, AnalyticAt.analyticOrderAt_deriv_add_one, Module.ringKrullDim_quotient_add_one_of_mem_nonZeroDivisors, Order.krullDim_WithTop, contDiffPointwiseHolderAt_iff, Matroid.eRk_insert_inter_add_eRk_insert_union_le, ringKrullDim_le_ringKrullDim_quotient_add_card, Dynamics.coverMincard_zero, ENat.natCast_lt_succ, PowerSeries.one_le_order_iff_constCoeff_eq_zero, Ideal.height_le_ringKrullDim_quotient_add_one, ENat.toENNRealRingHom_apply, instContMDiffVectorBundleOfNatWithTopENat, trivializationAt_model_space_apply, hasFTaylorSeriesUpToOn_top_iff, analyticOrderAt_mul, SimpleGraph.ediam_top, ENat.coe_toNatHom, Polynomial.le_trailingDegree_mul, ENat.ceil_natCast_add, hasFTaylorSeriesUpTo_succ_nat_iff_right, Order.coheight_coe_withTop, Dynamics.coverMincard_union_le, Topology.RelCWComplex.skeleton_union_iUnion_closedCell_eq_skeleton_succ, ENat.mul_top', hasFTaylorSeriesUpToOn_succ_nat_iff_right, Cardinal.ofENat_eq_one, ENat.one_le_iff_ne_zero_withTop, LinearMap.IsSymmetric.orthogonalFamily_eigenspaces', Order.height_eq_iSup_lt_height, Order.height_eq_coe_add_one_iff, SimpleGraph.eccent_eq_one_iff, ringKrullDim_le_ringKrullDim_quotient_add_spanFinrank, Cardinal.ofENat_mul, PartENat.toWithTop_one, contDiffWithinAt_succ_iff_hasFDerivWithinAt', contDiffOn_succ_iff_hasFDerivWithinAt, instIsContMDiffRiemannianBundleOfNatWithTopENat_2, Order.height_eq_coe_iff, LinearMap.IsSymmetric.orthogonalComplement_iSup_eigenspaces_eq_bot', SimpleGraph.ediam_eq_one, AddMonoidHom.ENatMap_apply, ENat.floor_one, SimpleGraph.edist_triangle, Matrix.eRank_subsingleton, tangentBundle_model_space_coe_chartAt_symm, tangentBundleModelSpaceHomeomorph_coe, MvPowerSeries.weightedOrder_mul_ge, ENat.card_sum, Set.one_le_encard_insert, IsManifold.instLEInftyOfNatWithTopENat_1, ENat.toNatHom_apply, ENat.mul_iInf_of_ne, Nat.Prime.emultiplicity_self, IsDiscreteValuationRing.addVal_mul, ENat.mul_epow, tangentBundleCore_coordChange_model_space, Module.length_eq_one, Metric.externalCoveringNumber_eq_one_of_ediam_le, ENat.epow_one, ENat.ceil_add_toENNReal, Module.End.genEigenspace_one, contDiffOn_all_iff_nat, instIsManifoldMinSmoothnessOfNatWithTopENat, ringKrullDim_add_length_eq_ringKrullDim_of_isRegular, Order.krullDim_le_one_iff_of_boundedOrder, SubMulAction.ENat_card_ofStabilizer_add_one_eq, contDiffOn_succ_iff_deriv_of_isOpen, Int.two_pow_sub_pow', Matroid.eRk_union_le_eRk_add_eRk, Matroid.eRk_le_eRk_inter_add_eRk_diff, instContMDiffMulOfNatWithTopENat, Cardinal.toNat_toENat, Manifold.riemannianEDist_def, Ideal.height_le_ringKrullDim_quotient_add_encard, Ideal.primeHeight_add_one_le_of_lt, Set.one_le_chainHeight_iff, tangentBundleCore.isContMDiff, ringKrullDim_quotient_span_singleton_succ_eq_ringKrullDim_of_mem_nonZeroDivisors, contDiffOn_iff_forall_nat_le, contDiff_succ_iff_fderiv_apply, ENat.add_one_eq_coe_top_iff, emultiplicity_geom_sumβ‚‚_eq_one, TangentBundle.contMDiffVectorBundle, Module.supportDim_quotSMulTop_succ_eq_supportDim, Matroid.IsCircuit.eRk_add_one_eq, SimpleGraph.ediam_le_two_mul_radius, PartENat.withTopEquiv_symm_one, contDiffAt_succ_iff_hasFDerivAt, toENat_rank_span_set, ENat.epow_eq_one_iff, ENat.iSup_mul, ENat.add_lt_add_iff_left, Set.encard_singleton_inter, Dynamics.coverMincard_le_pow, ringKrullDim_quotient_succ_le_of_nonZeroDivisor, Dynamics.coverMincard_mul_le_pow, contDiffWithinAt_infty, ringKrullDim_quotient_span_singleton_succ_eq_ringKrullDim_of_mem_jacobson, tangentBundle_model_space_chartAt, Module.length_eq_one_iff, ENat.one_le_epow, contMDiffAt_iff_nat, Cardinal.toENat_strictMonoOn, LinearMap.IsSymmetric.direct_sum_isInternal, Matroid.eRk_eq_one_iff, ENat.toNat_mul, Metric.externalCoveringNumber_singleton, IsPrincipalIdealRing.ringKrullDim_eq_one, Real.contDiffAt_rpow_const, ringKrullDim_add_natCard_le_ringKrullDim_mvPolynomial, ENat.sSup_add, IsDiscreteValuationRing.addVal_pow, ENat.addLECancellable_coe, Submodule.spanRank_toENat_eq_iInf_finset_card, ENat.pow_lt_top_iff, Module.length_finsupp, PowerSeries.le_order_pow, analyticOrderAt_pow, Order.one_le_krullDim_iff, squarefree_iff_emultiplicity_le_one, Set.encard_eq_one, ENat.toENNReal_one, Cardinal.continuum_toENat, ringKrullDim_le_ringKrullDim_add_card, analyticOrderAt_id, Set.encard_eq_add_one_iff, PowerSeries.order_pow, CategoryTheory.projectiveDimension_le_iff, SimpleGraph.chromaticNumber_le_one_of_subsingleton, ENat.toENNReal_add, contMDiffAt_vectorSpace_iff_contDiffAt, MvPowerSeries.order_expand, ENat.recTopCoe_one, ENat.iSup_add, Set.encard_ne_add_one, Module.supportDim_le_supportDim_quotSMulTop_succ, CategoryTheory.projectiveDimension_ge_iff, mdifferentiable_addInvariantVectorField, ENat.lt_add_one_iff, ENat.addLECancellable_of_ne_top, Module.supportDim_quotSMulTop_succ_eq_supportDim_mem_jacobson, Module.length_prod, AnalyticAt.analyticOrderAt_comp, Matroid.eRank_add_eRank_dual, Int.emultiplicity_pow_add_pow, contDiffAt_infty, TangentBundle.symmL_model_space, PowerSeries.le_order_subst, ENat.pow_eq_top_iff, CategoryTheory.injectiveDimension_lt_iff, Polynomial.ringKrullDim_le, ENat.mul_iInf, Cardinal.toENat_le_iff_of_le_aleph0, ENat.sSup_mul, contDiff_nat_iff_continuous_differentiable, Cardinal.toENat_eq_top, ENat.le_sub_one_of_lt, differentiableWithinAt_localInvariantProp, contDiffWithinAt_iff_forall_nat_le, ENat.add_one_pos, SimpleGraph.eq_top_iff_forall_eccent_eq_one, Cardinal.one_lt_ofENat, Topology.CWComplex.iUnion_openCell_eq_skeleton, ENat.ceil_one, Ideal.map_height_le_one_of_mem_minimalPrimes, tangentBundleModelSpaceHomeomorph_coe_symm, PartENat.toWithTop_one', contDiff_one_iff_hasFDerivAt, Int.two_pow_sub_pow, MeasureTheory.stoppedProcess_eq', Order.krullDim_le_one_iff_forall_isMax, Order.krullDim_withBot, Matroid.eRk_union_le_encard_add_eRk, Cardinal.ofENat_le_one, Metric.packingNumber_singleton, contMDiff_equivTangentBundleProd, instIsManifoldOfNatWithTopENatOfMinSmoothness_1, SubAddAction.ENat_card_ofStabilizer_add_zero_eq, Nat.Prime.emultiplicity_pow, Matroid.eRk_union_le_eRk_add_encard, ringKrullDim_nat, Module.length_eq_add_of_exact, ENat.add_le_add_iff_right, ENat.toENNReal_mul, Cardinal.toENat_le_natCast_iff, Set.toENat_cardinalMk, ENat.mul_left_strictMono, Module.End.mem_genEigenspace_one, hasFTaylorSeriesUpToOn_succ_iff_left, Cardinal.enat_gc, Matroid.eRk_insert_eq_add_one, contDiffOn_succ_iff_fderivWithin, Order.krullDim_eq_iSup_height_add_coheight_of_nonempty, Set.one_lt_encard_iff, MvPowerSeries.order_mul_ge, Real.contDiff_rpow_const_of_le, ContDiffPointwiseHolderAt.contDiffAt, Cardinal.toENat_le_nat, hasFTaylorSeriesUpTo_top_iff, Module.End.genEigenspace_div, mdifferentiableAt_mulInvariantVectorField, contDiffOn_succ_iff_fderiv_apply, ENat.map_add, contMDiffWithinAt_infty, Module.supportDim_le_supportDim_quotSMulTop_succ_of_mem_jacobson, ENat.floor_natCast_add, contDiff_succ_iff_deriv, IsManifold.instOfNatWithTopENat_1, Module.End.HasUnifEigenvalue.of_mem_spectrum, ENat.toENNReal_pow, contDiffOn_succ_iff_derivWithin, ENat.card_eq_one_iff_unique, ENat.toNat_add, Dynamics.netMaxcard_univ, Set.encard_pi_eq_prod_encard, ENat.floor_toENNReal_add, Module.End.Eigenvalues.val_mk, PowerSeries.coe_orderHom, instContMDiffAddOfNatWithTopENat, Matroid.eRk_singleton_eq, height_le_ringKrullDim_quotient_add_spanFinrank, IsManifold.instOfNatWithTopENat_2, Order.coheight_eq_coe_iff, Cardinal.toENat_comp_ofENat, ENat.floor_add_toENNReal, contDiffOn_succ_iff_hasFDerivWithinAt_of_uniqueDiffOn, ENat.top_pow, ENat.one_lt_top, ENat.addLECancellable_of_lt_top, ENat.floor_sub_one, Cardinal.toENat_le_iff_of_lt_aleph0, ENat.top_mul, Ideal.height_le_height_add_encard_of_subset, Nat.Prime.emultiplicity_mul, emultiplicity_pow_prime_sub_pow_prime, Cardinal.ofENat_toENat_le, analyticOrderAt_smul, ringKrullDim_add_enatCard_le_ringKrullDim_mvPolynomial, Set.encard_insert_le, SimpleGraph.radius_top, Ideal.height_le_one_of_isPrincipal_of_mem_minimalPrimes_of_isLocalRing, Int.two_pow_two_pow_sub_pow_two_pow, Set.encard_le_one_iff, Cardinal.toENat_le_one, Set.encard_diff_singleton_add_one, emultiplicity_pow, Order.krullDim_eq_length_of_finiteDimensionalOrder, Set.encard_tsub_one_le_encard_diff_singleton, ENat.mul_le_mul_right_iff, Cardinal.toENat_injOn, LinearIndepOn.encard_le_toENat_rank, Matroid.eRk_compl_union_add_eRk_compl_inter_le, ENat.ceil_add_one, Cardinal.toENat_eq_nat, contDiff_infty, contMDiffAt_addInvariantVectorField, contMDiff_tangentBundleModelSpaceHomeomorph, Order.KrullDimLE.krullDim_le, Ring.ord_mul, Set.one_lt_encard_iff_nontrivial, ENat.add_biSup, minSmoothness_add, Set.encard_diff_add_encard_inter, ringKrullDim_le_ringKrullDim_add_spanFinrank, ENat.succ_def, PowerSeries.order_X, Cardinal.ofENat_toENat_eq_self, ENat.mul_iInf', Cardinal.ofENat_toENat, ENat.sum_iSup_of_monotone, contMDiffAt_infty, Order.krullDim_eq_one_iff_of_boundedOrder, Set.encard_le_one_iff_eq, Matroid.eRk_le_one_iff, Module.length_pi, Set.encard_add_encard_compl, Cardinal.aleph_toENat, contMDiff_tangentBundleModelSpaceHomeomorph_symm, contDiffOn_succ_of_fderiv_apply, Matroid.eRk_singleton_eq_one_iff, Nat.Prime.emultiplicity_factorial_mul_succ, Ideal.height_le_one_of_isPrincipal_of_mem_minimalPrimes, Nat.emultiplicity_pow_sub_pow, Ideal.height_le_height_add_spanFinrank_of_le, contDiff_norm_rpow, Cardinal.toENat_eq_iff_of_le_aleph0, MvPowerSeries.order_mul, Order.krullDim_le_one_iff_forall_isMin, Polynomial.ringKrullDim_of_isNoetherianRing, Order.height_coe_withBot, MvPolynomial.ringKrullDim_of_isNoetherianRing, Set.one_le_encard_iff_nonempty, Ideal.height_le_spanRank_toENat, Mathlib.Tactic.ENatToNat.coe_add, ENat.mul_top, ENat.add_left_injective_of_ne_top, Cardinal.natCast_eq_toENat_iff, Module.length_of_free_of_finite, Set.encard_insert_of_notMem, ENat.mul_le_mul_left_iff, Metric.coveringNumber_singleton, Module.supportDim_quotSMulTop_succ_eq_of_notMem_minimalPrimes_of_mem_jacobson, ContDiffPointwiseHolderAt.zero_exponent_iff, Matroid.one_le_eRank, Set.encard_diff_singleton_of_mem, IsManifold.instLEInftyCastWithTopENat, Cardinal.toENat_nat, Polynomial.trailingDegree_mul', PowerSeries.order_mul, ENat.ceil_toENNReal_add, contMDiffOn_vectorSpace_iff_contDiffOn, Matroid.toENat_cRank_eq, MvPowerSeries.le_order_pow, Manifold.exists_lt_of_riemannianEDist_lt, ENat.one_lt_card, ENat.self_le_mul_right, ENat.add_le_add_iff_left, Order.coheight_eq_iSup_gt_coheight, AnalyticAt.analyticOrderAt_sub_eq_one_of_deriv_ne_zero, ENat.mul_right_strictMono, inTangentCoordinates_model_space, SimpleGraph.edist_top_of_ne, ENat.coe_add, Order.krullDim_of_isSimpleOrder, ringKrullDim_le_ringKrullDim_quotSMulTop_succ, Module.supportDim_quotSMulTop_succ_le_of_notMem_minimalPrimes, SimpleGraph.edist_boxProd, Mathlib.Tactic.ENatToNat.coe_one, Cardinal.ofENat_one, contMDiffWithinAt_iff_nat, ENat.ceil_le_floor_add_one, Matroid.eRk_submod, ENat.natCast_lt_of_coe_top_le_withTop, SimpleGraph.chromaticNumber_eq_one_iff, Dynamics.one_le_netMaxcard_iff, Cardinal.natCast_le_toENat_iff, hasFTaylorSeriesUpToOn_top_iff_add, ENat.add_biSup', ENat.add_lt_add_iff_right, Manifold.exists_lt_locally_constant_of_riemannianEDist_lt, SimpleGraph.edist_eq_one_iff_adj, Set.encard_le_one_iff_subsingleton, ENat.biSup_add, Set.encard_singleton, inCoordinates_tangent_bundle_core_model_space, PowerSeries.le_weightedOrder_subst, ENat.lt_coe_add_one_iff, ENat.card_le_one, Polynomial.le_trailingDegree_X, Module.length_eq_rank, contMDiff_snd_tangentBundle_modelSpace, emultiplicity_mul, Cardinal.toENat_lt_top, MonoidWithZeroHom.ENatMap_apply, instLieGroupOfNatWithTopENat, Order.one_lt_height_iff, Polynomial.trailingDegree_X, Cardinal.toENat_congr, Polynomial.emultiplicity_le_one_of_separable, contMDiffOn_infty, ENat.one_le_iff_ne_zero, contDiff_succ_iff_hasFDerivAt, Module.End.hasUnifEigenvalue_iff_hasUnifEigenvalue_one, ENat.lt_one_iff_eq_zero, Matroid.toENat_cRk_eq, Set.encard_le_encard_diff_add_encard, ringKrullDim_le_ringKrullDim_quotient_add_encard, contDiff_one_iff_deriv, Order.krullDimLE_iff, Cardinal.toENat_eq_one, ENat.epow_zero, contDiffWithinAt_succ_iff_hasFDerivWithinAt, ENat.one_epow, SimpleGraph.eccent_top, Polynomial.trailingDegree_mul, ENat.top_mul', SimpleGraph.chromaticNumber_bot, SimpleGraph.edist_le_one_iff_adj_or_eq, WithBot.add_one_le_iff, Metric.coveringNumber_le_one_of_ediam_le, LinearMap.IsSymmetric.eigenvectorBasis_def
instIsOrderedRingENat πŸ“–CompOpβ€”
instLinearOrderENat πŸ“–CompOp
310 mathmath: Function.Embedding.encard_le, ENat.add_lt_top, Cardinal.natCast_lt_toENat_iff, ENat.toENNReal_lt_top, emultiplicity_le_emultiplicity_of_dvd_left, ENat.top_pos, ENat.lt_add_one_iff', Set.toENat_cardinalMk_subtype, ENat.self_le_mul_left, Cardinal.toENat_eq_natCast_iff, ENat.card_le_card_of_injective, Cardinal.ofENat_lt_ofNat, Set.tsub_encard_le_encard_diff, Matrix.eRank_le_card_width, AddCircle.card_torsion_le_of_isSMulRegular, ENat.card_lt_top, MvPowerSeries.le_order_mul, Cardinal.ofENat_le_ofNat, Cardinal.toENat_ofENat, Set.ncard_le_encard, Module.length_of_free, Matrix.eRank_le_card_height, emultiplicity_add_eq_min, Module.End.independent_genEigenspace, ENat.card_pos, ENat.toENNReal_strictMono, Finset.set_encard_biUnion_le, ENat.one_lt_card_iff_nontrivial, Set.encard_preimage_val_le_encard_left, Module.End.genEigenspace_directed, lt_emultiplicity_of_lt_multiplicity, ENat.monotone_map_iff, Submodule.spanRank_toENat_eq_iInf_encard, Topology.RelCWComplex.coe_skeletonLT, Module.End.maxGenEigenspace_eq, Nat.count_le_setENCard, MvPowerSeries.le_weightedOrder_mul, Cardinal.toENat_eq_zero, MvPowerSeries.le_order_prod, Topology.CWComplex.iUnion_openCell_eq_skeletonLT, emultiplicity_lt_iff_not_dvd, Cardinal.toENat_eq_ofNat, emultiplicity_le_emultiplicity_of_dvd_right, Module.End.maxGenEigenspace_eq_genEigenspace_finrank, emultiplicity_pos_of_dvd, Module.End.mapsTo_genEigenspace_of_comm, PowerSeries.order_mul_ge, ENat.forall_natCast_le_iff_le, WithBot.lt_add_one_iff, Cardinal.ofENat_mono, Polynomial.IsDistinguishedAt.degree_eq_coe_lift_order_map, Set.encard_preimage_val_le_encard_right, PowerSeries.le_order_smul, PowerSeries.order_finite_iff_ne_zero, Polynomial.le_trailingDegree_C, MvPowerSeries.le_weightedOrder_prod, Nat.Prime.emultiplicity_le_emultiplicity_choose_add, ENat.map_natCast_strictMono, Topology.RelCWComplex.iUnion_openCell_eq_skeleton, MvPowerSeries.le_weightedOrder_map, le_emultiplicity_map, Stream'.Seq.length'_le_iff, Cardinal.ofENat_lt_aleph0, MvPowerSeries.nat_le_order, ENat.one_le_card_iff_nonempty, Mathlib.Tactic.ENatToNat.not_lt_top, ENat.card_le_one_iff_subsingleton, Cardinal.toENat_lt_natCast_iff, Polynomial.le_trailingDegree_monomial, Set.Finite.encard_lt_top, ENat.card_lt_top_of_finite, Submodule.inf_genEigenspace, MvPowerSeries.nat_le_weightedOrder, Set.encard_union_le, Module.End.genEigenspace_top_eq_maxUnifEigenspaceIndex, Set.encard_strictMono, Polynomial.trailingDegree_le_trailingDegree, Order.krullDim_le_of_krullDim_preimage_le, Cardinal.toENat_lift, ENat.add_one_le_iff, ENat.instOrderTopology, MvPowerSeries.one_le_order_iff_constCoeff_eq_zero, Cardinal.toENat_le_ofNat, MvPowerSeries.le_weightedOrder_pow, le_emultiplicity_of_le_multiplicity, PowerSeries.le_order_map, emultiplicity_le_emultiplicity_iff, MvPowerSeries.min_weightedOrder_le_add, Set.eq_empty_or_encard_eq_top_or_encard_diff_singleton_lt, ENat.eq_top_iff_forall_gt, LinearMap.finrank_genEigenspace_le, Module.End.iSup_genEigenspace_eq, Module.End.genEigenspace_inf_le_add, ENat.coe_toNat_le_self, Module.End.eigenspace_le_genEigenspace, Cardinal.one_le_ofENat, Ideal.height_le_spanRank_toENat_of_mem_minimal_primes, ContDiffMapSupportedIn.iteratedFDerivWithOrderLM_apply, ENat.epow_right_mono, PowerSeries.le_order_mul, Set.encard_lt_top_iff, Set.encard_le_card, Set.Finite.encard_lt_encard, ContDiffMapSupportedIn.structureMapLM_apply_withOrder, ENat.natCast_lt_succ, PowerSeries.one_le_order_iff_constCoeff_eq_zero, ENat.toENNRealOrderEmbedding_apply, Nat.emultiplicity_two_factorial_lt, le_emultiplicity_of_pow_dvd, MvPowerSeries.le_weightedOrder_smul, Polynomial.le_trailingDegree_mul, ENat.mul_top', Stream'.Seq.at_least_as_long_as_coind, Module.End.disjoint_genEigenspace, ENat.one_le_iff_ne_zero_withTop, Submodule.inf_iSup_genEigenspace, Polynomial.trailingDegree_le_of_ne_zero, FiniteMultiplicity.emultiplicity_le_of_multiplicity_le, Module.End.genEigenspace_eq_genEigenspace_maxUnifEigenspaceIndex_of_le, Cardinal.ofENat_le_ofENat, ENat.toENNReal_lt, Polynomial.le_trailingDegree_C_mul_X_pow, Cardinal.ofNat_lt_ofENat, MvPowerSeries.weightedOrder_mul_ge, MvPowerSeries.le_order, Set.one_le_encard_insert, Set.Nonempty.encard_pos, PowerSeries.le_order_pow_of_constantCoeff_eq_zero, MvPowerSeries.order_le, ENat.toENNReal_min, Module.End.mem_genEigenspace_top, Module.End.injOn_genEigenspace, IsDiscreteValuationRing.addVal_add, Module.End.genEigenspace_one, Set.encard_iUnion_le_of_finite, Cardinal.toENatAux_gc, AddCircle.card_torsion_le_of_isSMulRegular_int, Cardinal.toNat_toENat, ENat.toENNReal_mono, pow_dvd_iff_le_emultiplicity, ENat.epow_left_mono, Polynomial.natTrailingDegree_le_trailingDegree, PowerSeries.min_order_le_order_add, toENat_rank_span_set, Set.encard_mono, dvd_iff_emultiplicity_pos, ENat.add_lt_add_iff_left, Set.encard_singleton_inter, ENat.one_le_epow, Cardinal.toENat_strictMonoOn, Matroid.ExchangeProperty.encard_diff_le_aux, Module.End.genEigenspace_eq_iSup_genEigenspace_nat, Cardinal.ofNat_le_ofENat, ENat.addLECancellable_coe, Submodule.spanRank_toENat_eq_iInf_finset_card, ENat.pow_lt_top_iff, Set.encard_le_coe_iff_finite_ncard_le, MvPowerSeries.le_order_smul, PowerSeries.le_order_pow, emultiplicity_prime_le_emultiplicity_image_by_factor_orderIso, squarefree_iff_emultiplicity_le_one, Cardinal.continuum_toENat, Polynomial.trailingDegree_lt_wf, Topology.RelCWComplex.iUnion_openCell_eq_skeletonLT, Module.End.genEigenspace_le_genEigenspace_maxUnifEigenspaceIndex, ENat.le_coe_iff, ContDiffMapSupportedIn.structureMapCLM_apply_withOrder, Set.encard_le_encard_iff_encard_diff_le_encard_diff, Module.End.genEigenspace_zero_nat, FiniteMultiplicity.emultiplicity_lt_of_multiplicity_lt, ENat.lt_add_one_iff, ENat.addLECancellable_of_ne_top, Cardinal.ofENat_lt_ofENat, Module.End.genEigenspace_top, Cardinal.ofENat_strictMono, Polynomial.ringKrullDim_le, Cardinal.toENat_le_iff_of_le_aleph0, ENat.coe_lt_coe, PowerSeries.order_le, emultiplicity_lt_top, Cardinal.toENat_eq_top, ENat.coe_le_coe, MvPowerSeries.weightedOrder_le, ENat.add_one_pos, Cardinal.one_lt_ofENat, Topology.CWComplex.iUnion_openCell_eq_skeleton, Topology.RelCWComplex.skeleton_monotone, Cardinal.ofENat_lt_nat, Set.encard_image_le, MvPowerSeries.weightedOrder_add_of_weightedOrder_ne, Module.End.generalized_eigenvec_disjoint_range_ker, Cardinal.ofENat_le_one, Cardinal.ofENat_pos, ENat.add_le_add_iff_right, Nat.Prime.emultiplicity_factorial_le_div_pred, UniqueFactorizationMonoid.le_emultiplicity_iff_replicate_le_normalizedFactors, Cardinal.toENat_le_natCast_iff, Set.toENat_cardinalMk, ENat.mul_left_strictMono, Module.End.mem_genEigenspace_one, Cardinal.enat_gc, PowerSeries.le_order, Set.one_lt_encard_iff, MvPowerSeries.order_mul_ge, Module.End.IsFinitelySemisimple.genEigenspace_eq_eigenspace, Cardinal.toENatAux_le_nat, Cardinal.toENat_le_nat, Set.encard_pos, ENat.toENNReal_max, Module.End.genEigenspace_div, Set.encard_le_coe_iff, MvPowerSeries.le_weightedOrder, Module.End.genEigenspace_eq_genEigenspace_finrank_of_le, Set.encard_lt_encard_iff_encard_diff_lt_encard_diff, PowerSeries.IsWeierstrassFactorization.degree_eq_coe_lift_order_map, Module.End.genEigenspace_nat, Cardinal.toENat_comp_ofENat, PowerSeries.IsWeierstrassFactorizationAt.degree_eq_coe_lift_order_map_of_ne_top, ENat.strictMono_map_iff, ENat.one_lt_top, Module.End.genEigenspace_le_maximal, Cardinal.toENat_le_iff_of_lt_aleph0, Module.End.mem_genEigenspace_nat, Cardinal.ofENat_toENat_le, MvPowerSeries.order_add_of_order_ne, Set.encard_insert_le, Set.encard_le_one_iff, Cardinal.toENat_le_one, Set.encard_le_encard_of_injOn, Set.encard_tsub_one_le_encard_diff_singleton, ENat.mul_le_mul_right_iff, Cardinal.toENat_injOn, LinearIndepOn.encard_le_toENat_rank, Cardinal.toENat_eq_nat, Set.one_lt_encard_iff_nontrivial, min_le_emultiplicity_add, emultiplicity_pos_iff, ENat.succ_def, Cardinal.nat_le_ofENat, Cardinal.ofENat_toENat_eq_self, ENat.exists_nat_gt, Cardinal.ofENat_toENat, Function.Injective.encard_range, Set.encard_le_one_iff_eq, Topology.RelCWComplex.skeletonLT_I, Cardinal.aleph_toENat, IsDiscreteValuationRing.addVal_le_iff_dvd, Set.encard_le_encard, ENat.toENNReal_le, Cardinal.toENat_eq_iff_of_le_aleph0, PowerSeries.order_add_of_order_ne, Module.End.hasGenEigenvector_iff, ENat.tendsto_nhds_top_iff_natCast_lt, Module.End.mem_genEigenspace_zero, Set.encard_iUnion_le_of_fintype, Set.one_le_encard_iff_nonempty, Ideal.height_le_spanRank_toENat, Cardinal.natCast_eq_toENat_iff, ENat.eq_top_iff_forall_ge, Cardinal.ofENat_le_nat, ENat.mul_le_mul_left_iff, Module.End.genEigenspace_le_genEigenspace_finrank, Module.End.mem_genEigenspace, le_emultiplicity_iff_replicate_subperm_primeFactorsList, Cardinal.toENat_nat, Topology.RelCWComplex.skeletonLT_monotone, PowerSeries.nat_le_order, Module.End.genEigenspace_zero, Polynomial.le_trailingDegree_X_pow, Matroid.toENat_cRank_eq, Set.Finite.encard_biUnion_le, MvPowerSeries.le_order_pow, ENat.one_lt_card, ENat.self_le_mul_right, ENat.add_le_add_iff_left, ENat.mul_right_strictMono, Module.End.genEigenspace_le_smul, MvPowerSeries.min_order_le_add, PowerSeries.le_order_prod, PowerSeries.order_add_of_order_eq, Matrix.eRank_submatrix_le, Module.End.genEigenspace_restrict, Cardinal.natCast_le_toENat_iff, Polynomial.trailingDegree_one_le, Stream'.Seq.lt_length'_iff, Set.Finite.encard_strictMonoOn, ENat.add_lt_add_iff_right, multiplicity_le_emultiplicity, Set.encard_le_one_iff_subsingleton, Module.End.pos_finrank_genEigenspace_of_hasEigenvalue, ENat.lt_coe_add_one_iff, ENat.card_le_one, Polynomial.le_trailingDegree_X, Module.length_eq_rank, Order.krullDim_le_of_krullDim_preimage_le', Cardinal.toENat_lt_top, MvPowerSeries.le_order_pow_of_constantCoeff_eq_zero, Cardinal.toENat_congr, ENat.range_natCast, ENat.one_le_iff_ne_zero, ENat.lt_one_iff_eq_zero, Matroid.toENat_cRk_eq, Set.encard_le_encard_diff_add_encard, Cardinal.toENat_eq_one, ENat.not_lt_zero, ENat.top_mul', ENat.coe_lt_top, Cardinal.nat_lt_ofENat, WithBot.add_one_le_iff, MvPowerSeries.le_order_map
instLinearOrderedAddCommMonoidWithTopENat πŸ“–CompOp
27 mathmath: IsDiscreteValuationRing.addVal_zero, Finset.set_encard_biUnion_le, Finset.emultiplicity_prod, multiplicity_addValuation_apply, Set.encard_iUnion_of_finite, IsDiscreteValuationRing.addVal_def', Irreducible.addVal_pow, IsDiscreteValuationRing.addVal_uniformizer, MvPowerSeries.le_weightedOrder_subst, IsDiscreteValuationRing.addVal_mul, IsDiscreteValuationRing.addVal_add, Set.encard_iUnion_le_of_finite, IsDiscreteValuationRing.addVal_pow, IsDiscreteValuationRing.addVal_eq_zero_iff, PowerSeries.order_prod, Module.length_pi_of_fintype, IsDiscreteValuationRing.addVal_eq_top_iff, IsDiscreteValuationRing.addVal_eq_zero_of_unit, Set.Finite.encard_biUnion, IsDiscreteValuationRing.addVal_def, MvPowerSeries.order_prod, IsDiscreteValuationRing.addVal_one, IsDiscreteValuationRing.addVal_le_iff_dvd, Set.encard_iUnion_le_of_fintype, Set.Finite.encard_biUnion_le, PowerSeries.le_order_prod, MvPowerSeries.weightedOrder_prod
instNoZeroDivisorsENat πŸ“–CompOp
3 mathmath: Order.krullDim_le_of_krullDim_preimage_le, Polynomial.ringKrullDim_le, Order.krullDim_le_of_krullDim_preimage_le'
instNontrivialENat πŸ“–CompOp
3 mathmath: Order.krullDim_le_of_krullDim_preimage_le, Polynomial.ringKrullDim_le, Order.krullDim_le_of_krullDim_preimage_le'
instOrderBotENat πŸ“–CompOpβ€”
instOrderTopENat πŸ“–CompOpβ€”
instOrderedSubENat πŸ“–CompOpβ€”
instSubENat πŸ“–CompOp
37 mathmath: SimpleGraph.vertexCoverNum_le_card_sub_one, ContinuousOn.enatSub, Set.tsub_encard_le_encard_diff, ENat.le_sub_of_add_le_right, Mathlib.Tactic.ENatToNat.coe_sub, ContinuousWithinAt.enatSub, ENat.ceil_sub_one, SimpleGraph.vertexCoverNum_top, ENat.toENNReal_sub, Stream'.Seq.drop_length', ENat.top_sub_one, Continuous.enatSub, ENat.sub_eq_top_iff, ENat.continuousAt_sub, ENat.sub_iSup, ENat.floor_sub_natCast, ENat.le_sub_of_add_le_left, Order.height_eq_coe_iff, ContinuousAt.enatSub, ENat.ceil_sub_natCast, ENat.floor_sub_toENNReal, ENat.top_sub_coe, Filter.Tendsto.enatSub, ENat.coe_sub, ENat.ceil_sub_toENNReal, ENat.le_sub_one_of_lt, ENat.top_sub_ofNat, ENat.ceil_sub_ofNat, ENat.sub_top, ENat.floor_sub_ofNat, Set.encard_diff, Order.coheight_eq_coe_iff, ENat.floor_sub_one, Set.encard_tsub_one_le_encard_diff_singleton, ENat.sub_sub_cancel, ENat.toNat_sub, Set.encard_diff_singleton_of_mem
instSuccOrderENat πŸ“–CompOp
1 mathmath: ENat.succ_def
instWellFoundedLTENat πŸ“–CompOpβ€”
instZeroENat πŸ“–CompOp
187 mathmath: instContMDiffAddOfNatWithTopENatOfContinuousAdd, AlgebraicGeometry.Scheme.height_of_isClosed, ENat.floor_pos, ENat.top_pos, Matroid.eRk_loops, Metric.externalCoveringNumber_eq_zero, Set.encard_eq_zero, emultiplicity_of_isUnit_right, Metric.packingNumber_eq_zero, Matroid.eRk_empty, Matroid.eRank_loopyOn, SimpleGraph.chromaticNumber_pos, Order.krullDim_nonneg_iff, Dynamics.coverMincard_eq_zero_iff, ENat.iSup_zero, ENat.card_pos, instLieGroupOfNatWithTopENatOfIsTopologicalGroup, Module.length_eq_zero, Order.krullDim_pos_iff, emultiplicity_zero_eq_zero_of_ne_zero, instContMDiffInvβ‚€OfNatWithTopENatOfContinuousInvβ‚€, contDiff_zero, SimpleGraph.radius_eq_zero_iff, emultiplicity_of_one_right, Order.height_pos, Cardinal.toENat_eq_zero, IsManifold.instLEInftyOfNatWithTopENat_2, Order.krullDim_eq_zero_of_unique, emultiplicity_pos_of_dvd, ENat.card_eq_zero_iff_empty, Dynamics.coverMincard_empty, ENat.sSup_eq_zero, Polynomial.le_trailingDegree_C, Polynomial.trailingDegree_eq_zero, ENat.map_natCast_eq_zero, ENat.toNat_zero, Order.krullDim_nonpos_iff_forall_isMax, instLieAddGroupOfNatWithTopENatOfIsTopologicalAddGroup, Module.length_eq_zero_of_subsingleton_ring, ringKrullDim_nonneg_of_nontrivial, ringKrullDimZero_iff_ringKrullDim_eq_zero, hasFTaylorSeriesUpTo_zero_iff, Order.krullDim_nonpos_iff_forall_isMin, Module.length_pos_iff, SimpleGraph.edist_self, ENat.zero_epow, Metric.coveringNumber_empty, Metric.externalCoveringNumber_empty, Matroid.eRank_emptyOn, SimpleGraph.edist_top, SimpleGraph.chromaticNumber_eq_zero_of_isEmpty, contDiffWithinAt_zero, contMDiff_zero_iff, SimpleGraph.eccent_eq_zero_iff, PartENat.toWithTop_zero', Set.encard_empty, topologicalKrullDim_zero_of_discreteTopology, ENat.sInf_eq_zero, emultiplicity_eq_zero_iff_multiplicity_eq_zero, Dynamics.netMaxcard_empty, Stream'.Seq.length'_nil, Order.coheight_pos_of_lt_top, hasFTaylorSeriesUpToOn_zero_iff, Order.height_pos_of_bot_lt, Order.IsMax.coheight_eq_zero, SimpleGraph.edist_pos_of_ne, Cardinal.ofENat_eq_zero, ENat.ceil_pos, emultiplicity_eq_zero, Order.krullDim_nonpos_of_subsingleton, Order.height_eq_zero, ENat.toENNReal_zero, Real.contDiffAt_arcsin_iff, contDiffOn_zero, SimpleGraph.vertexCoverNum_eq_zero, Matrix.eRank_zero, ENat.mul_top', ENat.lift_zero, Matroid.eRk_loopyOn, Topology.RelCWComplex.skeletonLT_zero_eq_base, Matroid.IsLoop.eRk_eq, Module.length_bot, ENat.ceil_zero, Set.Nonempty.encard_pos, AnalyticOnNhd.codiscreteWithin_setOf_analyticOrderAt_eq_zero_or_top, contDiffGroupoid_zero_eq, SimpleGraph.edist_bot, SimpleGraph.ediam_eq_zero_of_subsingleton, Metric.coveringNumber_pos_iff, Polynomial.trailingDegree_C, PowerSeries.order_exp, Order.coheight_eq_zero, ENat.epow_eq_one_iff, dvd_iff_emultiplicity_pos, Order.coheight_top, Set.chainHeight_empty, ENat.epow_eq_zero_iff, Matroid.eRank_eq_zero_iff, Stream'.Seq.length'_eq_zero_iff_nil, SimpleGraph.eccent_pos_iff, SimpleGraph.vertexCoverNum_of_subsingleton, Order.krullDim_eq_zero_iff_of_orderTop, Module.length_pos, PartENat.toWithTop_zero, Mathlib.Tactic.ENatToNat.coe_zero, ringKrullDim_eq_zero_of_isField, Order.height_bot, ENat.iSup_eq_zero, Matroid.eRk_eq_zero_iff', ENat.recTopCoe_zero, Ideal.primeHeight_eq_zero_iff, ENat.floor_zero, emultiplicity_of_unit_right, SimpleGraph.ediam_eq_zero_iff_subsingleton, IsDiscreteValuationRing.addVal_eq_zero_iff, Matroid.eRk_eq_zero_iff, Cardinal.toENatAux_zero, AnalyticOnNhd.codiscrete_setOf_analyticOrderAt_eq_zero_or_top, SimpleGraph.chromaticNumber_eq_zero_of_isempty, PowerSeries.order_zero_of_unit, ENat.add_one_pos, PowerSeries.order_one, PartENat.withTopEquiv_symm_zero, Module.length_eq_zero_iff, instContMDiffVectorBundleOfNatWithTopENat_1, Cardinal.toENatAux_eq_zero, Polynomial.trailingDegree_one, Order.krullDim_pos_iff_of_orderTop, Cardinal.ofENat_pos, ENat.sub_top, Order.krullDim_eq_zero, Set.encard_pos, Order.krullDim_pos_iff_of_orderBot, PartENat.withTopEquiv_zero, instIsContMDiffRiemannianBundleOfNatWithTopENat, IsDiscreteValuationRing.addVal_eq_zero_of_unit, ENat.toNat_eq_zero, contDiffAt_zero, Nat.Prime.emultiplicity_one, Dynamics.netMaxcard_eq_zero_iff, SimpleGraph.vertexCoverNum_bot, instContMDiffMulOfNatWithTopENatOfContinuousMul, analyticOrderAt_of_not_analyticAt, analyticOrderAt_eq_zero, PartENat.ofENat_zero, Cardinal.zero_eq_ofENat, IsDiscreteValuationRing.addVal_one, Ring.ord_one, emultiplicity_pos_iff, Topology.CWComplex.skeletonLT_zero_eq_empty, Order.IsMin.height_eq_zero, Metric.externalCoveringNumber_pos_iff, ENat.floor_eq_zero, Order.krullDim_nonneg, Metric.coveringNumber_eq_zero, Order.coheight_pos, SimpleGraph.edist_eq_zero_iff, ringKrullDim_eq_zero_of_field, ENat.iInf_eq_zero, Metric.packingNumber_pos_iff, Module.End.mem_genEigenspace_zero, Matroid.eq_loopyOn_iff_eRank, ENat.coe_zero, ENat.sSup_eq_zero', ENat.map_zero, Metric.packingNumber_empty, Set.chainHeight_of_isEmpty, Module.End.genEigenspace_zero, Ideal.height_bot, Set.chainHeight_eq_zero_iff, Cardinal.ofENat_zero, contMDiffOn_zero_iff, ENat.zero_epow_top, ContDiffPointwiseHolderAt.zero_order_iff, Real.contDiffAt_arccos_iff, Order.krullDim_eq_zero_iff_of_orderBot, Polynomial.trailingDegree_one_le, ENat.ceil_eq_zero, Mathlib.Meta.Positivity.natCeil_pos, MvPowerSeries.weightedOrder_one, IsManifold.instOfNatWithTopENat, SimpleGraph.eccent_eq_zero_of_subsingleton, ENat.lt_one_iff_eq_zero, ENat.epow_zero, ENat.not_lt_zero, ENat.top_mul', AnalyticAt.analyticOrderAt_eq_zero

---

← Back to Index