Documentation Verification Report

Lattice

πŸ“ Source: Mathlib/Data/ENat/Lattice.lean

Statistics

MetricCount
DefinitionsinstCompleteLinearOrderENat, instCompleteLinearOrderWithBotENat
2
Theoremsadd_biSup, add_biSup', add_iSup, add_sSup, biSup_add, biSup_add', biSup_add_biSup_le, biSup_add_biSup_le', coe_iInf, coe_iSup, coe_sInf, coe_sSup, exists_eq_iInf, exists_eq_iSup_of_lt_top, exists_eq_iSupβ‚‚_of_lt_top, finite_of_sSup_lt_top, iInf_coe_eq_top, iInf_coe_lt_top, iInf_coe_ne_top, iInf_eq_top_of_isEmpty, iInf_eq_zero, iInf_mul, iInf_mul', iInf_mul_of_ne, iInf_toNat, iSup_add, iSup_add_iSup, iSup_add_iSup_le, iSup_add_iSup_of_monotone, iSup_coe_eq_top, iSup_coe_lt_top, iSup_coe_ne_top, iSup_eq_zero, iSup_mul, iSup_natCast, iSup_zero, mul_iInf, mul_iInf', mul_iInf_of_ne, mul_iSup, mul_sSup, sInf_eq_zero, sSup_add, sSup_eq_top_of_infinite, sSup_eq_zero, sSup_eq_zero', sSup_mem_of_nonempty_of_lt_top, sSup_mul, smul_iSup, smul_sSup, sub_iSup
51
Total53

ENat

Theorems

NameKindAssumesProvesValidatesDepends On
add_biSup πŸ“–mathematicalSet.NonemptyENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
Set
Set.instMembership
β€”add_biSup'
add_biSup' πŸ“–mathematicalβ€”ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
β€”iSup_subtype'
add_iSup
nonempty_subtype
add_iSup πŸ“–mathematicalβ€”ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
β€”eq_or_ne
top_add
ciSup_const
le_antisymm
add_le_of_le_tsub_left_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
le_iSup_of_le
le_self_add
iSup_le
le_sub_of_add_le_left
le_iSup
le_imp_le_of_le_of_le
le_refl
add_le_add_right
add_sSup πŸ“–mathematicalSet.Nonempty
ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
iSup
Set
Set.instMembership
β€”sSup_eq_iSup
add_biSup
biSup_add πŸ“–mathematicalSet.NonemptyENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
Set
Set.instMembership
β€”biSup_add'
biSup_add' πŸ“–mathematicalβ€”ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
β€”add_comm
add_biSup'
iSup_congr_Prop
biSup_add_biSup_le πŸ“–mathematicalSet.Nonempty
ENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
iSup
ConditionallyCompletePartialOrderSup.toSupSet
Set
Set.instMembership
β€”biSup_add_biSup_le'
biSup_add_biSup_le' πŸ“–mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
iSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”biSup_add'
iSup_congr_Prop
add_biSup'
iSupβ‚‚_le
coe_iInf πŸ“–mathematicalβ€”ENat
instNatCast
iInf
Nat.instInfSet
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
β€”WithTop.coe_iInf
OrderBot.bddBelow
coe_iSup πŸ“–mathematicalBddAbove
Set.range
ENat
instNatCast
iSup
Nat.instSupSet
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
β€”WithTop.coe_iSup
coe_sInf πŸ“–mathematicalSet.NonemptyENat
instNatCast
InfSet.sInf
Nat.instInfSet
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
Set
Set.instMembership
β€”WithTop.coe_sInf
OrderBot.bddBelow
coe_sSup πŸ“–mathematicalBddAboveENat
instNatCast
SupSet.sSup
Nat.instSupSet
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
Set
Set.instMembership
β€”WithTop.coe_sSup
exists_eq_iInf πŸ“–mathematicalβ€”iInf
ENat
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
β€”csInf_mem
Set.range_nonempty
exists_eq_iSup_of_lt_top πŸ“–β€”ENat
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
iSup
ConditionallyCompletePartialOrderSup.toSupSet
Top.top
instTopENat
β€”β€”sSup_mem_of_nonempty_of_lt_top
Set.instNonemptyRange
exists_eq_iSupβ‚‚_of_lt_top πŸ“–β€”ENat
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
iSup
ConditionallyCompletePartialOrderSup.toSupSet
Top.top
instTopENat
β€”β€”iSup_prod'
Prod.exists'
exists_eq_iSup_of_lt_top
finite_of_sSup_lt_top πŸ“–mathematicalENat
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
Top.top
instTopENat
Set.Finiteβ€”Mathlib.Tactic.Contrapose.contrapose₁
sSup_eq_top_of_infinite
iInf_coe_eq_top πŸ“–mathematicalβ€”iInf
ENat
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
instNatCast
Top.top
instTopENat
IsEmpty
β€”WithTop.iInf_coe_eq_top
iInf_coe_lt_top πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
instNatCast
Top.top
instTopENat
β€”WithTop.iInf_coe_lt_top
iInf_coe_ne_top πŸ“–β€”β€”β€”β€”iInf_coe_eq_top
not_isEmpty_iff
iInf_eq_top_of_isEmpty πŸ“–mathematicalβ€”iInf
ENat
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
instNatCast
Top.top
instTopENat
β€”iInf_coe_eq_top
iInf_eq_zero πŸ“–mathematicalβ€”iInf
ENat
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
instZeroENat
β€”iInf_lt_iff
iInf_mul πŸ“–mathematicalβ€”ENat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
β€”mul_comm
mul_iInf
iInf_mul' πŸ“–mathematicalβ€”ENat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
β€”mul_comm
mul_iInf'
iInf_mul_of_ne πŸ“–mathematicalβ€”ENat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
β€”iInf_mul'
instIsEmptyFalse
iInf_toNat πŸ“–mathematicalβ€”toNat
iInf
ENat
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
instNatCast
Nat.instInfSet
β€”isEmpty_or_nonempty
iInf_eq_top_of_isEmpty
Nat.iInf_of_empty
iSup_add πŸ“–mathematicalβ€”ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
β€”add_comm
add_iSup
iSup_add_iSup πŸ“–mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
iSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”isEmpty_or_nonempty
iSup_of_empty
bot_eq_zero
zero_add
le_antisymm
iSup_add_iSup_le
le_iSup_of_le
iSup_le
add_le_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
le_iSup
iSup_add_iSup_le πŸ“–mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
iSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”iSup_add
add_iSup
iSupβ‚‚_le
iSup_add_iSup_of_monotone πŸ“–mathematicalMonotone
ENat
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
iSup
ConditionallyCompletePartialOrderSup.toSupSet
β€”iSup_add_iSup
add_le_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
exists_ge_ge
iSup_coe_eq_top πŸ“–mathematicalβ€”iSup
ENat
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
instNatCast
Top.top
instTopENat
BddAbove
Set.range
β€”WithTop.iSup_coe_eq_top
iSup_coe_lt_top πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
iSup
ConditionallyCompletePartialOrderSup.toSupSet
instNatCast
Top.top
instTopENat
BddAbove
Set.range
β€”WithTop.iSup_coe_lt_top
iSup_coe_ne_top πŸ“–mathematicalβ€”BddAbove
Set.range
β€”Iff.not_left
iSup_coe_eq_top
iSup_eq_zero πŸ“–mathematicalβ€”iSup
ENat
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
instZeroENat
β€”iSup_eq_bot
iSup_mul πŸ“–mathematicalβ€”ENat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
β€”mul_comm
mul_iSup
iSup_natCast πŸ“–mathematicalβ€”iSup
ENat
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
instNatCast
Top.top
instTopENat
β€”iSup_eq_top
exists_nat_gt
lt_top_iff_ne_top
iSup_zero πŸ“–mathematicalβ€”iSup
ENat
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
instZeroENat
β€”β€”
mul_iInf πŸ“–mathematicalβ€”ENat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
β€”LE.le.antisymm
le_iInf
le_imp_le_of_le_of_le
mul_le_mul_right
CanonicallyOrderedAdd.toMulLeftMono
iInf_le
le_refl
exists_eq_iInf
iInf_le_iff
mul_iInf' πŸ“–mathematicalβ€”ENat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
β€”isEmpty_or_nonempty
iInf_of_empty
mul_top'
mul_iInf
mul_iInf_of_ne πŸ“–mathematicalβ€”ENat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
β€”mul_iInf'
instIsEmptyFalse
mul_iSup πŸ“–mathematicalβ€”ENat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
β€”LE.le.antisymm'
iSup_le
mul_le_mul'
CanonicallyOrderedAdd.toMulLeftMono
covariant_swap_mul_of_covariant_mul
Eq.le
le_iSup_iff
eq_or_ne
MulZeroClass.zero_mul
isEmpty_or_nonempty
ciSup_of_empty
bot_eq_zero'
MulZeroClass.mul_zero
lt_top_iff_ne_top
iSup_eq_top
LT.lt.false
LT.lt.trans_le
LE.le.trans_lt
self_le_mul_left
exists_eq_iSup_of_lt_top
mul_sSup πŸ“–mathematicalβ€”ENat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
iSup
Set
Set.instMembership
β€”sSup_eq_iSup
mul_iSup
sInf_eq_zero πŸ“–mathematicalβ€”InfSet.sInf
ENat
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
instZeroENat
Set
Set.instMembership
β€”lt_one_iff_eq_zero
sSup_add πŸ“–mathematicalSet.Nonempty
ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
iSup
Set
Set.instMembership
β€”sSup_eq_iSup
biSup_add
sSup_eq_top_of_infinite πŸ“–mathematicalSet.Infinite
ENat
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
Top.top
instTopENat
β€”sSup_eq_top
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_and_eq
Set.Finite.subset
Finite.Set.finite_image
Finite.of_fintype
lt_of_le_of_lt
toNat_le_of_le_coe
LT.lt.ne_top
sSup_eq_zero πŸ“–mathematicalβ€”SupSet.sSup
ENat
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
instZeroENat
β€”sSup_eq_bot
sSup_eq_zero' πŸ“–mathematicalβ€”SupSet.sSup
ENat
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
instZeroENat
Set
Set.instEmptyCollection
Set.instSingletonSet
β€”sSup_eq_bot'
sSup_mem_of_nonempty_of_lt_top πŸ“–mathematicalENat
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
Top.top
instTopENat
Set
Set.instMembership
β€”Set.Nonempty.csSup_mem
Set.Nonempty.of_subtype
finite_of_sSup_lt_top
sSup_mul πŸ“–mathematicalβ€”ENat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
iSup
Set
Set.instMembership
β€”mul_comm
iSup_congr_Prop
mul_sSup
smul_iSup πŸ“–mathematicalβ€”ENat
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
β€”smul_one_mul
mul_iSup
smul_sSup πŸ“–mathematicalβ€”ENat
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
iSup
Set
Set.instMembership
β€”sSup_eq_iSup
smul_iSup
sub_iSup πŸ“–mathematicalβ€”ENat
instSubENat
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
β€”em
tsub_eq_zero_iff_le
le_iSup_of_le
LT.lt.le
iInf_eq_bot
tsub_eq_zero_of_le
bot_eq_zero
le_antisymm
le_iInf
tsub_le_tsub_left
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
le_iSup
le_sub_of_add_le_left
ne_top_of_le_ne_top
iSup_le
add_le_of_le_tsub_right_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
iInf_le_of_le
tsub_le_self
sub_sub_cancel
iInf_le

(root)

Definitions

NameCategoryTheorems
instCompleteLinearOrderENat πŸ“–CompOp
395 mathmath: Order.coheight_add_one_le, Matroid.eRk_lt_top_iff, Dynamics.netMaxcard_monotone_subset, SimpleGraph.ediam_le_iff, SimpleGraph.ediam_anti, Order.LTSeries.length_le_krullDim, ENat.floor_pos, SimpleGraph.vertexCoverNum_le_card_sub_one, Ideal.height_le_spanFinrank, Order.krullDim_le_of_strictComono_and_surj, ENat.sSup_eq_top_of_infinite, ringKrullDim_succ_le_ringKrullDim_polynomial, PartENat.ofENat_le, Matroid.eRk_lt_encard_iff_dep, PowerSeries.le_order_subst_left', Order.krullDim_lt_coe_iff, CategoryTheory.Retract.injectiveDimension_le, Ideal.height_le_iff_exists_minimalPrimes, SimpleGraph.le_chromaticNumber_iff_colorable, SimpleGraph.le_chromaticNumber_iff_coloring, ENat.iInf_mul_of_ne, ENat.smul_sSup, CategoryTheory.injectiveDimension_le_iff, SimpleGraph.chromaticNumber_pos, Matroid.eRk_singleton_le, Order.krullDim_nonneg_iff, Matroid.eRk_mono, Ring.krullDimLE_iff, ENat.gc_toENNReal_floor, ENat.iSup_zero, Ideal.height_lt_top, ENat.ceil_le_ceil, Order.length_le_coheight, Dynamics.netMaxcard_le_coverMincard, Order.height_add_one_le, Dynamics.coverMincard_finite_of_isCompact_invariant, SimpleGraph.Walk.edist_le, Matroid.eRank_le_encard_add_eRk_compl, ENat.iInf_toNat, Order.krullDim_pos_iff, Order.krullDim_le_one_iff, SimpleGraph.ediam_eq_top, SimpleGraph.vertexCoverNum_le_iff, Dynamics.coverMincard_image_le, Set.chainHeight_le_encard, Ideal.sup_primeHeight_eq_ringKrullDim, Submodule.spanRank_toENat_eq_iInf_encard, Matroid.le_eRk_iff, Ideal.primeHeight_mono, ENat.le_floor, AddMonoid.minOrder_le_addOrderOf, SimpleGraph.two_le_chromaticNumber_of_adj, Order.height_pos, SimpleGraph.card_le_chromaticNumber_iff_forall_surjective, Order.le_krullDim_iff, SimpleGraph.three_le_egirth, Dynamics.IsDynNetIn.card_le_netMaxcard, Ideal.primeHeight_lt_top, SimpleGraph.chromaticNumber_le_sum_right, Metric.coveringNumber_two_mul_le_externalCoveringNumber, ENat.mul_iSup, ENat.sSup_eq_zero, Ideal.height_strict_mono_of_is_prime, SimpleGraph.chromaticNumber_mono_of_embedding, le_minSmoothness, ringKrullDim_succ_le_ringKrullDim_powerseries, Dynamics.one_le_coverMincard_iff, Dynamics.coverMincard_monotone_time, Order.coheight_le_krullDim, Matroid.eRk_lt_encard_iff_dep_of_finite, IsContDiffImplicitAt.one_le, Order.krullDim_nonpos_iff_forall_isMax, ENat.biSup_add', SimpleGraph.chromaticNumber_le_of_forall_imp, PowerSeries.le_order_subst_right', ENat.iInf_mul', ringKrullDim_nonneg_of_nontrivial, Submodule.length_lt, Order.coheight_eq_coe_add_one_iff, Order.krullDim_nonpos_iff_forall_isMin, Module.length_pos_iff, SimpleGraph.vertexCoverNum_le_vertexCoverNum_of_injective, Monoid.minOrder_le_natCard, AddMonoid.le_minOrder, Module.supportDim_le_of_injective, Metric.externalCoveringNumber_le_one_of_ediam_le, SimpleGraph.eccent_le_one_iff, PartENat.toWithTop_lt, Matroid.eRk_le_eRk_add_eRk_diff, ENat.floor_le_ceil, Dynamics.coverMincard_closure_le, Submodule.height_strictMono, Matroid.eRk_compl_insert_union_add_eRk_compl_insert_inter_le, ENat.iInf_coe_lt_top, ENat.ceil_lt_top, Metric.externalCoveringNumber_anti, Order.height_le_krullDim, ENat.iInf_mul, Matroid.eRk_insert_le_add_one, Set.chainHeight_mono, Ideal.height_le_height_add_of_liesOver, MvPowerSeries.le_order_subst, ENat.add_iSup, CategoryTheory.injectiveDimension_ge_iff, Ideal.height_le_height_add_one_of_mem, Matroid.spanning_iff_eRk_le', SimpleGraph.chromaticNumber_eq_iInf, ENat.mul_sSup, Metric.packingNumber_two_mul_le_externalCoveringNumber, SimpleGraph.chromaticNumber_sum, Order.bot_lt_krullDim, topologicalKrullDim_subspace_le, Dynamics.coverMincard_finite_of_isCompact_uniformContinuous, Ideal.height_le_card_of_mem_minimalPrimes_span, SimpleGraph.chromaticNumber_le_card, topologicalKrullDim_zero_of_discreteTopology, ringKrullDim_quotient_le, Matroid.eRk_inter_add_eRk_union_le, Order.krullDim_eq_iSup_coheight_of_nonempty, ENat.coe_sSup, ringKrullDim_succ_le_of_surjective, ENat.sInf_eq_zero, SimpleGraph.vertexCoverNum_mono, Ideal.primeHeight_le_ringKrullDim, Order.krullDim_eq_iSup_length, Dynamics.IsDynCoverOf.coverMincard_le_card, Metric.externalCoveringNumber_mono_set, Ideal.sup_primeHeight_of_maximal_eq_ringKrullDim, Ideal.height_le_spanRank_toENat_of_mem_minimal_primes, Metric.IsCover.externalCoveringNumber_le_encard, Order.coheight_pos_of_lt_top, CategoryTheory.projectiveDimension_lt_iff, Order.coheight_eq_coe_iff_maximal_le_coheight, ContDiffMapSupportedIn.iteratedFDerivWithOrderLM_apply, ENat.ceil_le, SimpleGraph.chromaticNumber_le_iff_colorable, Ideal.primeHeight_strict_mono, Order.height_pos_of_bot_lt, ENat.ceil_lt, SimpleGraph.edist_pos_of_ne, ringKrullDim_le_iff_height_le, natCast_le_analyticOrderAt, Dynamics.coverMincard_antitone, ENat.ceil_pos, Dynamics.netMaxcard_antitone, ENat.add_sSup, SimpleGraph.vertexCoverNum_le_encard_edgeSet, Order.krullDim_nonpos_of_subsingleton, Matroid.IsRkFinite.eRk_lt_top, Matroid.Indep.encard_le_eRk_of_subset, Matroid.eRank_le_encard_ground, Order.coheight_eq_iSup_head_eq, ENat.ceil_add_le, SimpleGraph.vertexCoverNum_lt_card, ENat.lt_ceil, Matroid.eRank_lt_top_iff, ENat.coe_iSup, ENat.smul_iSup, PartENat.toWithTop_le, IsInducing.topologicalKrullDim_le, Matroid.eRk_insert_inter_add_eRk_insert_union_le, Ideal.height_mono, Submodule.spanFinrank_span_le_encard, ringKrullDim_le_ringKrullDim_quotient_add_card, ContDiffMapSupportedIn.structureMapLM_apply_withOrder, Matroid.Indep.encard_le_eRank, Order.krullDim_eq_iSup_height_of_nonempty, Metric.IsCover.coveringNumber_le_encard, Ideal.height_le_ringKrullDim_quotient_add_one, ENat.sub_iSup, ENat.iInf_eq_top_of_isEmpty, ENat.floor_lt_ceil, ENat.iInf_coe_eq_top, Ideal.height_le_iff, SimpleGraph.chromaticNumber_le_two_iff_isBipartite, ENat.floor_lt_top, SimpleGraph.two_le_chromaticNumber_iff_ne_bot, MvPowerSeries.le_weightedOrder_subst, Dynamics.coverMincard_union_le, ENat.gc_ceil_toENNReal, ENat.exists_eq_iInf, MeasureTheory.stoppedProcess_eq, Module.length_le_of_surjective, Order.height_eq_iSup_lt_height, Order.height_eq_coe_add_one_iff, IsClosedEmbedding.topologicalKrullDim_le, ringKrullDim_le_ringKrullDim_quotient_add_spanFinrank, Matroid.eRk_le_iff, SimpleGraph.le_chromaticNumber_iff_forall_surjective, Order.krullDim_enat, Order.height_le_coe_iff, Order.height_eq_coe_iff, SimpleGraph.edist_le_eccent, SimpleGraph.Colorable.chromaticNumber_le, SimpleGraph.edist_triangle, ENat.coe_iInf, Order.length_le_height, ENat.mul_iInf_of_ne, SimpleGraph.IsVertexCover.vertexCoverNum_le, Order.height_le_height_apply_of_strictMono, ENat.LEInfty.out, Order.krullDim_le_one_iff_of_boundedOrder, Matroid.eRk_union_le_eRk_add_eRk, Matroid.eRk_le_eRk_inter_add_eRk_diff, ENat.iSup_natCast, Metric.coveringNumber_pos_iff, ENat.floor_mono, Ideal.height_le_ringKrullDim_quotient_add_encard, Ideal.primeHeight_add_one_le_of_lt, Set.one_le_chainHeight_iff, tangentBundleCore.isContMDiff, SimpleGraph.cliqueNum_le_chromaticNumber, ENat.le_ceil, Order.krullDim_eq_iSup_coheight, TangentBundle.contMDiffVectorBundle, SimpleGraph.ediam_le_two_mul_radius, SimpleGraph.edist_eq_sInf, ENat.iSup_mul, Dynamics.coverMincard_le_pow, Ideal.height_le_iff_covBy, ringKrullDim_quotient_succ_le_of_nonZeroDivisor, SimpleGraph.eccent_le_ediam, Dynamics.coverMincard_mul_le_pow, le_analyticOrderAt_sub, le_analyticOrderAt_add, Dynamics.netMaxcard_monotone_time, SimpleGraph.ediam_eq_iSup_iSup_edist, Order.krullDim_eq_iSup_height, AddMonoid.le_minOrder_iff_forall_addSubgroup, SimpleGraph.eccent_pos_iff, ringKrullDim_add_natCard_le_ringKrullDim_mvPolynomial, ENat.sSup_add, Order.coheight_le_coheight_apply_of_strictMono, Module.length_pos, Submodule.spanRank_toENat_eq_iInf_finset_card, SimpleGraph.edist_anti, ENat.coe_sInf, PartENat.ofENat_lt, Order.one_le_krullDim_iff, ENat.iSup_eq_zero, Metric.coveringNumber_subset_le, Order.coheight_le_iff', Order.krullDim_le_of_strictMono, ringKrullDim_le_iff_isMaximal_height_le, ringKrullDim_le_ringKrullDim_add_card, CategoryTheory.projectiveDimension_le_iff, SimpleGraph.chromaticNumber_le_one_of_subsingleton, Metric.coveringNumber_le_packingNumber, ContDiffMapSupportedIn.structureMapCLM_apply_withOrder, PartENat.withTopEquiv_le, Monoid.le_minOrder_iff_forall_subgroup, Module.supportDim_le_ringKrullDim, Module.length_le_of_injective, ENat.iSup_add, PartENat.withTopEquiv_lt, Module.supportDim_le_supportDim_quotSMulTop_succ, CategoryTheory.projectiveDimension_ge_iff, Matroid.eRk_le_eRank, SimpleGraph.le_chromaticNumber_of_pairwise_adj, PowerSeries.le_order_subst, ringKrullDim_lt_top, CategoryTheory.injectiveDimension_lt_iff, SimpleGraph.chromaticNumber_mono, ENat.ceil_mono, Polynomial.ringKrullDim_le, ENat.mul_iInf, SimpleGraph.diam_def, ENat.sSup_mul, ENat.iSup_coe_eq_top, Matroid.eRk_lt_encard_of_dep_of_finite, SimpleGraph.edist_le_ediam, Order.coheight_le_coe_iff, Ideal.map_height_le_one_of_mem_minimalPrimes, Dynamics.netMaxcard_finite_iff, MeasureTheory.stoppedProcess_eq', Order.krullDim_le_one_iff_forall_isMax, Matroid.eRk_union_le_encard_add_eRk, ENat.floor_lt, Order.krullDim_pos_iff_of_orderTop, SimpleGraph.radius_le_ediam, Matroid.eRk_union_le_eRk_add_encard, cauchy_davenport_minOrder_add, SimpleGraph.chromaticNumber_eq_biInf, Dynamics.coverMincard_le_netMaxcard, Order.coheight_coe_enat, SimpleGraph.eccent_le_iff, Order.krullDim_eq_iSup_height_add_coheight_of_nonempty, Order.krullDim_pos_iff_of_orderBot, SimpleGraph.ediam_def, SimpleGraph.egirth_le_length, SimpleGraph.chromaticNumber_le_sum_left, Module.supportDim_le_supportDim_quotSMulTop_succ_of_mem_jacobson, PartENat.withTopEquiv_symm_le, SimpleGraph.egirth_anti, SimpleGraph.IsClique.card_le_chromaticNumber, Ideal.sup_height_eq_ringKrullDim, Set.encard_le_chainHeight_of_isChain, Ideal.finiteHeight_iff_lt, height_le_ringKrullDim_quotient_add_spanFinrank, Order.coheight_eq_coe_iff, SimpleGraph.radius_le_eccent, ENat.toENNReal_iSup, Ideal.height_le_height_add_encard_of_subset, ENat.lt_floor, Matroid.Dep.eRk_lt_encard, Metric.externalCoveringNumber_le_encard_self, ringKrullDim_add_enatCard_le_ringKrullDim_mvPolynomial, Ideal.height_le_one_of_isPrincipal_of_mem_minimalPrimes_of_isLocalRing, Order.height_le_iff, PowerSeries.le_order_subst_right, Metric.IsSeparated.encard_le_packingNumber, Dynamics.coverMincard_finite_iff, Matroid.eRk_compl_union_add_eRk_compl_inter_le, Order.KrullDimLE.krullDim_le, ENat.add_biSup, ringKrullDim_le_ringKrullDim_add_spanFinrank, Metric.externalCoveringNumber_pos_iff, ENat.mul_iInf', Order.coheight_anti, Matroid.eRk_le_one_iff, Order.height_mono, Order.height_le_iff', Order.krullDim_nonneg, Order.coheight_pos, Ideal.height_le_one_of_isPrincipal_of_mem_minimalPrimes, ENat.iInf_eq_zero, Ideal.height_le_height_add_spanFinrank_of_le, Metric.packingNumber_pos_iff, Metric.externalCoveringNumber_le_coveringNumber, Order.index_le_height, Order.coheight_eq, SimpleGraph.le_egirth, Order.krullDim_le_one_iff_forall_isMin, Metric.encard_le_of_isSeparated, Matroid.eRk_le_encard, ENat.floor_le_floor, SimpleGraph.edist_le, Monoid.le_minOrder, Ideal.height_le_spanRank_toENat, Order.rev_index_le_coheight, cauchy_davenport_minOrder_mul, ENat.sSup_eq_zero', CategoryTheory.Retract.projectiveDimension_le, Matroid.one_le_eRank, Ideal.height_le_card_of_mem_minimalPrimes_span_finset, MvPowerSeries.le_weightedOrder_subst_of_forall_ne_zero, Metric.coveringNumber_le_encard_self, Set.chainHeight_eq_iSup, Ideal.height_le_ringKrullDim_of_ne_top, SimpleGraph.IsContained.vertexCoverNum_le_vertexCoverNum, Order.height_eq_iSup_last_eq, ENat.toENNReal_iInf, Order.height_enat, Order.length_le_height_last, Order.coheight_eq_iSup_gt_coheight, ringKrullDim_le_of_surjective, SimpleGraph.Walk.three_le_chromaticNumber_of_odd_loop, Metric.packingNumber_le_encard_self, minSmoothness_monotone, Submodule.height_lt_top, ringKrullDim_le_ringKrullDim_quotSMulTop_succ, Module.supportDim_quotSMulTop_succ_le_of_notMem_minimalPrimes, Module.supportDim_le_of_surjective, Order.length_le_coheight_head, SimpleGraph.chromaticNumber_mono_of_hom, ENat.ceil_le_floor_add_one, Matroid.eRk_submod, PartENat.withTopEquiv_symm_lt, Monoid.minOrder_le_orderOf, Dynamics.one_le_netMaxcard_iff, Metric.coveringNumber_anti, ENat.add_biSup', Mathlib.Meta.Positivity.natCeil_pos, ENat.biSup_add, Order.bot_lt_krullDim_iff, AddMonoid.minOrder_le_natCard, PowerSeries.le_weightedOrder_subst, Order.height_eq_coe_iff_minimal_le_height, Dynamics.le_coverMincard_image, SimpleGraph.eccent_def, Matroid.spanning_iff_eRk_le, Order.one_lt_height_iff, Order.coheight_le_iff, natCast_le_analyticOrderAt_iff_iteratedDeriv_eq_zero, ENat.iSup_coe_lt_top, Polynomial.emultiplicity_le_one_of_separable, analyticOrderAt_add_of_ne, PowerSeries.le_order_subst_left, ENat.floor_le, ringKrullDim_le_ringKrullDim_quotient_add_encard, Order.krullDimLE_iff, SimpleGraph.edist_le_one_iff_adj_or_eq, SimpleGraph.radius_eq_iInf_iSup_edist, Metric.coveringNumber_le_one_of_ediam_le, Dynamics.coverMincard_monotone_subset
instCompleteLinearOrderWithBotENat πŸ“–CompOpβ€”

---

← Back to Index