Documentation Verification Report

Pow

πŸ“ Source: Mathlib/Data/ENat/Pow.lean

Statistics

MetricCount
DefinitionsinstPow
1
Theoremsepow_add, epow_eq_one_iff, epow_eq_zero_iff, epow_left_mono, epow_mul, epow_natCast, epow_one, epow_right_mono, epow_top, epow_zero, mul_epow, one_epow, one_le_epow, top_epow, top_epow_top, zero_epow, zero_epow_top
17
Total18

ENat

Definitions

NameCategoryTheorems
instPow πŸ“–CompOp
18 mathmath: epow_natCast, top_epow, zero_epow, epow_mul, epow_add, epow_right_mono, top_epow_top, mul_epow, epow_one, epow_left_mono, epow_eq_one_iff, epow_eq_zero_iff, one_le_epow, card_fun, zero_epow_top, epow_top, epow_zero, one_epow

Theorems

NameKindAssumesProvesValidatesDepends On
epow_add πŸ“–mathematicalβ€”ENat
instPow
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Distrib.toMul
β€”lt_trichotomy
lt_one_iff_eq_zero
eq_zero_or_pos
zero_add
epow_zero
one_mul
zero_epow
LT.lt.ne
MulZeroClass.zero_mul
add_pos_of_pos_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
bot_le
one_epow
mul_one
top_add
epow_top
top_mul
one_le_iff_ne_zero
one_le_epow
LT.lt.le
add_top
mul_top
pow_add
epow_eq_one_iff πŸ“–mathematicalβ€”ENat
instPow
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
instZeroENat
β€”lt_trichotomy
zero_epow
lt_one_iff_eq_zero
epow_right_mono
one_le_iff_ne_zero
LT.lt.le
not_lt_of_ge
epow_one
one_epow
epow_zero
epow_eq_zero_iff πŸ“–mathematicalβ€”ENat
instPow
instZeroENat
β€”one_le_iff_ne_zero
one_le_epow
epow_zero
zero_epow
epow_left_mono πŸ“–mathematicalβ€”Monotone
ENat
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
instPow
β€”lt_trichotomy
lt_one_iff_eq_zero
zero_epow_top
bot_le
one_epow
one_le_epow
one_le_iff_ne_zero
epow_top
LT.lt.trans_le
le_top
pow_left_mono
CanonicallyOrderedAdd.toMulLeftMono
covariant_swap_mul_of_covariant_mul
epow_mul πŸ“–mathematicalβ€”ENat
instPow
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”eq_or_ne
MulZeroClass.zero_mul
epow_zero
one_epow
MulZeroClass.mul_zero
lt_trichotomy
lt_one_iff_eq_zero
zero_epow
mul_ne_zero
top_mul
epow_top
top_epow
mul_top
LE.le.trans_lt'
epow_right_mono
one_le_iff_ne_zero
LT.lt.le
epow_one
pow_mul
epow_natCast πŸ“–mathematicalβ€”ENat
instPow
instNatCast
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
instCommSemiringENat
β€”β€”
epow_one πŸ“–mathematicalβ€”ENat
instPow
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”coe_one
epow_natCast
pow_one
epow_right_mono πŸ“–mathematicalβ€”Monotone
ENat
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
instPow
β€”top_le_iff
le_refl
lt_trichotomy
lt_one_iff_eq_zero
one_epow
epow_top
pow_right_monoβ‚€
IsOrderedRing.toZeroLEOneClass
IsOrderedRing.toPosMulMono
one_le_iff_ne_zero
Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
epow_top πŸ“–mathematicalENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
instPow
Top.top
instTopENat
β€”LT.lt.ne
LE.le.trans_lt
zero_le_one
IsOrderedRing.toZeroLEOneClass
epow_zero πŸ“–mathematicalβ€”ENat
instPow
instZeroENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”coe_zero
epow_natCast
pow_zero
mul_epow πŸ“–mathematicalβ€”ENat
instPow
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”lt_trichotomy
lt_one_iff_eq_zero
MulZeroClass.zero_mul
one_mul
one_epow
MulZeroClass.mul_zero
mul_one
epow_top
WithTop.top_mul_top
one_lt_mul
IsOrderedRing.toZeroLEOneClass
IsOrderedRing.toMulPosMono
LT.lt.le
mul_pow
one_epow πŸ“–mathematicalβ€”ENat
instPow
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”epow_natCast
one_pow
one_le_epow πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
instPow
β€”epow_zero
epow_right_mono
zero_le
top_epow πŸ“–mathematicalβ€”ENat
instPow
Top.top
instTopENat
β€”top_epow_top
epow_natCast
pow_eq_top_iff
Nat.cast_ne_zero
top_epow_top πŸ“–mathematicalβ€”ENat
instPow
Top.top
instTopENat
β€”β€”
zero_epow πŸ“–mathematicalβ€”ENat
instPow
instZeroENat
β€”zero_epow_top
epow_natCast
pow_eq_zero_iff'
isReduced_of_noZeroDivisors
Nat.cast_ne_zero
zero_epow_top πŸ“–mathematicalβ€”ENat
instPow
instZeroENat
Top.top
instTopENat
β€”β€”

---

← Back to Index