Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Data/EReal/Basic.lean

Statistics

MetricCount
DefinitionstoEReal, EReal, decidableLT, hasCoeENNReal, instCoeReal, instInhabited, instMul, instMulZeroOneClass, instTop, mul, neTopBotEquivReal, rec, toENNReal, toReal, evalENNRealToEReal, evalERealToENNReal, evalERealToReal, evalRealToEReal, toEReal, instAddCommMonoidEReal, instAddCommMonoidWithOneEReal, instAddMonoidEReal, instBotEReal, instCompleteLinearOrderEReal, instInfSetEReal, instLinearOrderEReal, instNontrivialEReal, instOneEReal, instPartialOrderEReal, instSupSetEReal, instZeroEReal
31
Theoremsbot_lt_coe, bot_lt_coe_ennreal, bot_lt_zero, bot_ne_coe, bot_ne_zero, canLift, coe_add, coe_coe_eq_natCast, coe_ennreal_add, coe_ennreal_eq_coe_ennreal_iff, coe_ennreal_eq_one, coe_ennreal_eq_top_iff, coe_ennreal_eq_zero, coe_ennreal_injective, coe_ennreal_le_coe_ennreal_iff, coe_ennreal_lt_coe_ennreal_iff, coe_ennreal_mul, coe_ennreal_ne_bot, coe_ennreal_ne_coe_ennreal_iff, coe_ennreal_ne_one, coe_ennreal_ne_zero, coe_ennreal_nonneg, coe_ennreal_nsmul, coe_ennreal_ofReal, coe_ennreal_one, coe_ennreal_pos, coe_ennreal_pos_iff_ne_zero, coe_ennreal_strictMono, coe_ennreal_toReal, coe_ennreal_top, coe_ennreal_zero, coe_eq_coe_iff, coe_eq_one, coe_eq_zero, coe_injective, coe_le_coe, coe_le_coe_iff, coe_lt_coe, coe_lt_coe_iff, coe_lt_top, coe_mul, coe_natCast, coe_ne_bot, coe_ne_coe_iff, coe_ne_one, coe_ne_top, coe_ne_zero, coe_neg', coe_nnreal_eq_coe_real, coe_nnreal_lt_top, coe_nnreal_ne_top, coe_nonneg, coe_nonpos, coe_nsmul, coe_one, coe_pos, coe_strictMono, coe_toENNReal, coe_toENNReal_eq_max, coe_toReal, coe_toReal_le, coe_zero, eq_bot_iff_forall_lt, eq_top_iff_forall_lt, exists, exists_between_coe_real, exists_rat_btwn_of_lt, forall, image_coe_Icc, image_coe_Ici, image_coe_Ico, image_coe_Iic, image_coe_Iio, image_coe_Ioc, image_coe_Ioi, image_coe_Ioo, inductionβ‚‚, inductionβ‚‚_symm, instCanLiftENNRealToERealLeOfNat, le_coe_toReal, lt_iff_exists_rat_btwn, lt_iff_exists_real_btwn, mul_comm, natCast_eq_iff, natCast_le_iff, natCast_lt_iff, natCast_mul, natCast_ne_bot, natCast_ne_iff, natCast_ne_top, one_mul, preimage_coe_Icc, preimage_coe_Ici, preimage_coe_Ico, preimage_coe_Ico_top, preimage_coe_Iic, preimage_coe_Iio, preimage_coe_Iio_top, preimage_coe_Ioc, preimage_coe_Ioc_bot, preimage_coe_Ioi, preimage_coe_Ioi_bot, preimage_coe_Ioo, preimage_coe_Ioo_bot, preimage_coe_Ioo_bot_top, preimage_coe_Ioo_top, range_coe, range_coe_ennreal, range_coe_eq_Ioo, real_coe_toENNReal, toENNReal_bot, toENNReal_coe, toENNReal_eq_toENNReal, toENNReal_eq_top_iff, toENNReal_eq_zero_iff, toENNReal_le_toENNReal, toENNReal_lt_toENNReal, toENNReal_ne_top_iff, toENNReal_ne_zero_iff, toENNReal_of_ne_top, toENNReal_of_nonpos, toENNReal_pos_iff, toENNReal_top, toENNReal_zero, toReal_bot, toReal_coe, toReal_coe_ennreal, toReal_eq_toReal, toReal_eq_zero_iff, toReal_image_Ioo_bot_zero, toReal_image_Ioo_zero_top, toReal_le_toReal, toReal_ne_zero_iff, toReal_neg, toReal_nonneg, toReal_nonpos, toReal_one, toReal_pos, toReal_toENNReal, toReal_top, toReal_zero, top_ne_coe, top_ne_zero, zero_lt_top, zero_mul, zero_ne_bot, zero_ne_top, instCharZeroEReal, instDenselyOrderedEReal, instIsOrderedAddMonoidEReal, instZeroLEOneClassEReal
151
Total182

ENNReal

Definitions

NameCategoryTheorems
toEReal πŸ“–CompOp
47 mathmath: EReal.coe_ennreal_add, EReal.coe_ennreal_le_coe_ennreal_iff, EReal.coe_ennreal_pow, EReal.coe_ennreal_mul_top, EReal.top_mul_coe_ennreal, EReal.isClosedEmbedding_coe_ennreal, EReal.abs_mul_sign, EReal.range_coe_ennreal, EReal.coe_ennreal_eq_coe_ennreal_iff, EReal.recENNReal_coe_ennreal, EReal.instCanLiftENNRealToERealLeOfNat, Measurable.coe_ereal_ennreal, EReal.coe_ennreal_zero, EReal.tendsto_coe_ennreal, EReal.toReal_coe_ennreal, continuous_coe_ennreal_ereal, EReal.coe_toENNReal_eq_max, EReal.coe_ennreal_eq_zero, measurable_coe_ennreal_ereal, EReal.bot_lt_coe_ennreal, EReal.coe_ennreal_eq_one, EReal.coe_ennreal_lt_coe_ennreal_iff, EReal.coe_ennreal_toReal, EReal.isEmbedding_coe_ennreal, toEReal_sub, AEMeasurable.coe_ereal_ennreal, EReal.coe_ennreal_injective, EReal.coe_nnreal_eq_coe_real, EReal.sign_mul_inv_abs, EReal.coe_ennreal_strictMono, EReal.sign_mul_abs, EReal.coe_toENNReal, EReal.coe_ennreal_one, EReal.coe_real_ereal_eq_coe_toNNReal_sub_coe_toNNReal, EReal.coe_abs, EReal.continuous_coe_ennreal_iff, EReal.toENNReal_coe, EReal.coe_ennreal_nsmul, EReal.coe_ennreal_nonneg, EReal.coe_nnreal_lt_top, EReal.coe_ennreal_ofReal, EReal.coe_ennreal_pos_iff_ne_zero, EReal.coe_ennreal_mul, EReal.sign_mul_inv_abs', EReal.coe_ennreal_eq_top_iff, EReal.coe_ennreal_top, EReal.coe_ennreal_pos

EReal

Definitions

NameCategoryTheorems
decidableLT πŸ“–CompOp
11 mathmath: sign_eq_and_abs_eq_iff_eq, abs_mul_sign, sign_mul, sign_coe, sign_bot, sign_top, le_iff_sign, sign_mul_inv_abs, sign_mul_abs, sign_neg, sign_mul_inv_abs'
hasCoeENNReal πŸ“–CompOpβ€”
instCoeReal πŸ“–CompOpβ€”
instInhabited πŸ“–CompOpβ€”
instMul πŸ“–CompOp
125 mathmath: toENNReal_mul', bot_mul_coe_of_neg, natCast_mul, div_eq_inv_mul, ExpGrowth.eventually_le_exp, mul_nonneg, instMeasurableMulβ‚‚, mul_nonpos_iff, bot_mul_coe_of_pos, Tendsto.mul, ExpGrowth.expGrowthInf_exp, Monotone.expGrowthInf_comp_mul, div_mul_div_comm, left_distrib_of_nonneg, ExpGrowth.expGrowthInf_le_iff, instPosMulMono, coe_ennreal_mul_top, top_mul_coe_of_pos, top_mul_coe_ennreal, LinearGrowth.frequently_mul_le, top_mul_of_pos, Monotone.expGrowthInf_comp, exists_nat_ge_mul, abs_mul_sign, mul_div_mul_cancel, instMulPosMono, LinearGrowth.linearGrowthInf_const_mul_self, one_mul, lt_div_iff, right_distrib_of_nonneg_of_ne_top, mul_top_of_neg, sign_mul, bot_mul_bot, Tendsto.mul_const, mul_div, nsmul_eq_mul, LinearGrowth.linearGrowthSup_le_iff, ExpGrowth.le_expGrowthInf_comp, LinearGrowth.linearGrowthSup_const_mul_self, mul_nonneg_iff, abs_mul, mul_top_of_pos, ENNReal.rpow_eq_exp_mul_log, mul_neg_iff, ExpGrowth.expGrowthSup_exp, coe_mul_top_of_pos, le_limsup_mul, limsup_mul_le, le_liminf_mul, ENNReal.log_pow, toENNReal_mul, ExpGrowth.le_expGrowthInf_iff, ExpGrowth.expGrowthSup_comp_le, Tendsto.const_mul, bot_mul_top, ExpGrowth.frequently_le_exp, liminf_mul_le, ExpGrowth.frequently_exp_le, top_mul_bot, Monotone.expGrowthInf_comp_le, instNoZeroDivisors, bot_mul_of_pos, div_lt_iff, LinearGrowth.eventually_mul_le, ENNReal.log_rpow, mul_comm, LinearGrowth.frequently_le_mul, mul_pos, ExpGrowth.eventually_exp_le, instMulPosReflectLT, mul_div_cancel, mul_bot_of_pos, mul_eq_bot, toReal_mul, mul_le_mul_of_nonpos_right, top_mul_of_neg, exp_mul, LinearGrowth.le_linearGrowthInf_iff, coe_mul, LinearGrowth.linearGrowthInf_le_iff, left_distrib_of_nonneg_of_ne_top, LinearGrowth.linearGrowthSup_comp_le, Monotone.linearGrowthInf_comp_le, top_mul_top, mul_div_left_comm, Monotone.linearGrowthInf_comp_mul, exp_nmul, LinearGrowth.eventually_le_mul, coe_mul_bot_of_neg, sign_mul_inv_abs, div_mul_cancel, ExpGrowth.expGrowthSup_le_iff, sign_mul_abs, Monotone.linearGrowthInf_comp, mul_div_right, tendsto_mul, mul_pos_iff, coe_mul_bot_of_pos, right_distrib_of_nonneg, mul_inv, Monotone.linearGrowthSup_comp_mul, Monotone.le_linearGrowthSup_comp, div_le_iff_le_mul, div_eq_iff, mul_bot_of_neg, bot_mul_of_neg, zero_mul, Monotone.expGrowthSup_comp, Monotone.linearGrowthSup_comp, neg_mul, Monotone.expGrowthSup_comp_mul, coe_ennreal_mul, continuousAt_mul, LinearGrowth.le_linearGrowthInf_comp, mul_eq_top, LinearGrowth.le_linearGrowthSup_iff, ExpGrowth.le_expGrowthSup_iff, le_div_iff_mul_le, sign_mul_inv_abs', div_div, coe_mul_top_of_neg, instPosMulReflectLT, LinearGrowth.EReal.eventually_atTop_exists_nat_between, top_mul_coe_of_neg, Monotone.le_expGrowthSup_comp
instMulZeroOneClass πŸ“–CompOpβ€”
instTop πŸ“–CompOp
98 mathmath: nhds_top_basis, LinearGrowth.linearGrowthSup_top, continuousAt_add_coe_top, bot_mul_coe_of_neg, sub_top, toENNReal_top, LSeries_injOn, LSeries_eventually_eq_zero_iff', forall, top_div_of_neg_ne_bot, top_sub, neg_eq_top_iff, coe_ennreal_mul_top, top_mul_coe_of_pos, add_lt_top, top_mul_coe_ennreal, tendsto_coe_atTop, ENNReal.log_top, bot_div_of_neg_ne_bot, top_mul_of_pos, nhds_top', canLift, LinearGrowth.linearGrowthInf_top, preimage_coe_Ioo_top, tendsto_toReal_atTop, top_add_of_ne_bot, top_sub_bot, range_coe_eq_Ioo, abs_top, toENNReal_eq_top_iff, mul_top_of_neg, bot_mul_bot, top_sub_coe, range_coe, top_add_iff_ne_bot, continuousOn_toReal, exp_eq_top_iff, mul_top_of_pos, LinearGrowth.tendsto_atTop_of_linearGrowthInf_pos, tendsto_exp_nhds_top_nhds_top, image_coe_Ici, toReal_top, Dynamics.coverEntropyEntourage_finite_of_isCompact_invariant, add_top_of_ne_bot, coe_mul_top_of_pos, top_add_coe, neg_eq_bot_iff, ENNReal.log_lt_top_iff, bot_mul_top, MeasureTheory.exists_lt_lowerSemicontinuous_integral_lt, coe_add_top, preimage_coe_Ico_top, exists, inv_top, top_mul_bot, sub_bot, top_div_of_pos_ne_top, continuousAt_add_top_coe, sign_top, ENNReal.log_eq_top_iff, preimage_coe_Ioo_bot_top, tendsto_coe_nhds_top_iff, div_top, mul_eq_bot, top_mul_of_neg, preimage_coe_Iio_top, tendsto_nhds_top_iff_real, toReal_image_Ioo_zero_top, inv_lt_top, top_mul_top, ExpGrowth.expGrowthSup_top, coe_mul_bot_of_neg, exp_lt_top_iff, continuousAt_add_top_top, toReal_eq_zero_iff, ExpGrowth.expGrowthInf_top, nhds_top, coe_sub_bot, top_add_top, mul_bot_of_neg, bot_mul_of_neg, zero_lt_top, add_top_iff_ne_bot, coe_nnreal_lt_top, nhdsWithin_top, image_coe_Ioi, mul_eq_top, LSeries_eq_zero_iff, eq_top_iff_forall_lt, neg_top, coe_ennreal_eq_top_iff, coe_mul_top_of_neg, coe_ennreal_top, neg_bot, exp_top, mem_nhds_top_iff, coe_lt_top, top_mul_coe_of_neg
mul πŸ“–CompOpβ€”
neTopBotEquivReal πŸ“–CompOpβ€”
rec πŸ“–CompOpβ€”
toENNReal πŸ“–CompOp
29 mathmath: toENNReal_mul', real_coe_toENNReal, ContinuousWithinAt.ereal_toENNReal, toENNReal_lt_toENNReal, toENNReal_eq_zero_iff, toENNReal_top, toENNReal_le_toENNReal, measurable_ereal_toENNReal, toENNReal_pos_iff, toENNReal_of_ne_top, ContinuousOn.ereal_toENNReal, toENNReal_eq_top_iff, toENNReal_eq_toENNReal, toENNReal_sub, coe_toENNReal_eq_max, ContinuousAt.ereal_toENNReal, toENNReal_mul, AEMeasurable.ereal_toENNReal, toENNReal_zero, continuous_toENNReal, toENNReal_bot, toENNReal_add, toReal_toENNReal, coe_toENNReal, Continuous.ereal_toENNReal, toENNReal_coe, toENNReal_of_nonpos, toENNReal_add_le, Measurable.ereal_toENNReal
toReal πŸ“–CompOp
33 mathmath: Measurable.ereal_toReal, toENNReal_of_ne_top, measurable_ereal_toReal, le_coe_toReal, toReal_nonpos, toReal_zero, tendsto_toReal_atTop, tendsto_toReal_atBot, toReal_neg, continuousOn_toReal, toReal_coe_ennreal, toReal_neg_eq, toReal_top, coe_toReal, toReal_add, toReal_image_Ioo_bot_zero, MeasureTheory.exists_lt_lowerSemicontinuous_integral_lt, toReal_bot, toReal_coe, AEMeasurable.ereal_toReal, toReal_mul, toReal_le_toReal, toReal_one, toReal_image_Ioo_zero_top, tendsto_toReal, toReal_toENNReal, toReal_eq_zero_iff, toReal_sub, toReal_pos, MeasureTheory.exists_upperSemicontinuous_lt_integral_gt, toReal_eq_toReal, coe_toReal_le, toReal_nonneg

Theorems

NameKindAssumesProvesValidatesDepends On
bot_lt_coe πŸ“–mathematicalβ€”EReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
Bot.bot
instBotEReal
Real.toEReal
β€”WithBot.bot_lt_coe
bot_lt_coe_ennreal πŸ“–mathematicalβ€”EReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
Bot.bot
instBotEReal
ENNReal.toEReal
β€”LT.lt.trans_le
bot_lt_coe
coe_ennreal_nonneg
bot_lt_zero πŸ“–mathematicalβ€”EReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
Bot.bot
instBotEReal
instZeroEReal
β€”bot_lt_coe
bot_ne_coe πŸ“–β€”β€”β€”β€”LT.lt.ne
bot_lt_coe
bot_ne_zero πŸ“–β€”β€”β€”β€”coe_ne_bot
canLift πŸ“–mathematicalβ€”CanLift
EReal
Real
Real.toEReal
Top.top
instTop
Bot.bot
instBotEReal
β€”β€”
coe_add πŸ“–mathematicalβ€”Real.toEReal
Real
Real.instAdd
EReal
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
instAddCommMonoidEReal
β€”β€”
coe_coe_eq_natCast πŸ“–mathematicalβ€”Real.toEReal
Real
Real.instNatCast
EReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneEReal
β€”β€”
coe_ennreal_add πŸ“–mathematicalβ€”ENNReal.toEReal
ENNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
EReal
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
instAddCommMonoidEReal
β€”β€”
coe_ennreal_eq_coe_ennreal_iff πŸ“–mathematicalβ€”ENNReal.toERealβ€”coe_ennreal_injective
coe_ennreal_eq_one πŸ“–mathematicalβ€”ENNReal.toEReal
EReal
instOneEReal
ENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”coe_ennreal_eq_coe_ennreal_iff
coe_ennreal_one
coe_ennreal_eq_top_iff πŸ“–mathematicalβ€”ENNReal.toEReal
Top.top
EReal
instTop
ENNReal
instTopENNReal
β€”coe_ennreal_injective
coe_ennreal_eq_zero πŸ“–mathematicalβ€”ENNReal.toEReal
EReal
instZeroEReal
ENNReal
instZeroENNReal
β€”coe_ennreal_eq_coe_ennreal_iff
coe_ennreal_zero
coe_ennreal_injective πŸ“–mathematicalβ€”ENNReal
EReal
ENNReal.toEReal
β€”StrictMono.injective
coe_ennreal_strictMono
coe_ennreal_le_coe_ennreal_iff πŸ“–mathematicalβ€”EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
ENNReal.toEReal
ENNReal
ENNReal.instPartialOrder
β€”StrictMono.le_iff_le
coe_ennreal_strictMono
coe_ennreal_lt_coe_ennreal_iff πŸ“–mathematicalβ€”EReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
ENNReal.toEReal
ENNReal
ENNReal.instPartialOrder
β€”StrictMono.lt_iff_lt
coe_ennreal_strictMono
coe_ennreal_mul πŸ“–mathematicalβ€”ENNReal.toEReal
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
EReal
instMul
β€”mul_comm
mul_comm
coe_ennreal_top
coe_ennreal_ne_bot πŸ“–β€”β€”β€”β€”LT.lt.ne'
bot_lt_coe_ennreal
coe_ennreal_ne_coe_ennreal_iff πŸ“–β€”β€”β€”β€”coe_ennreal_injective
coe_ennreal_ne_one πŸ“–β€”β€”β€”β€”Iff.not
coe_ennreal_eq_one
coe_ennreal_ne_zero πŸ“–β€”β€”β€”β€”Iff.not
coe_ennreal_eq_zero
coe_ennreal_nonneg πŸ“–mathematicalβ€”EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
ENNReal.toEReal
β€”coe_ennreal_le_coe_ennreal_iff
zero_le
ENNReal.instCanonicallyOrderedAdd
coe_ennreal_nsmul πŸ“–mathematicalβ€”ENNReal.toEReal
ENNReal
AddMonoid.toNatSMul
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
EReal
instAddMonoidEReal
β€”map_nsmul
AddMonoidHom.instAddMonoidHomClass
coe_ennreal_zero
coe_ennreal_add
coe_ennreal_ofReal πŸ“–mathematicalβ€”ENNReal.toEReal
ENNReal.ofReal
Real.toEReal
Real
Real.instMax
Real.instZero
β€”β€”
coe_ennreal_one πŸ“–mathematicalβ€”ENNReal.toEReal
ENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
EReal
instOneEReal
β€”β€”
coe_ennreal_pos πŸ“–mathematicalβ€”EReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
ENNReal.toEReal
ENNReal
ENNReal.instPartialOrder
instZeroENNReal
β€”coe_ennreal_zero
coe_ennreal_lt_coe_ennreal_iff
coe_ennreal_pos_iff_ne_zero πŸ“–mathematicalβ€”EReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
ENNReal.toEReal
β€”coe_ennreal_pos
pos_iff_ne_zero
ENNReal.instCanonicallyOrderedAdd
coe_ennreal_strictMono πŸ“–mathematicalβ€”StrictMono
ENNReal
EReal
PartialOrder.toPreorder
ENNReal.instPartialOrder
instPartialOrderEReal
ENNReal.toEReal
β€”WithTop.strictMono_iff
coe_lt_coe_iff
coe_lt_top
coe_ennreal_toReal πŸ“–mathematicalβ€”Real.toEReal
ENNReal.toReal
ENNReal.toEReal
β€”CanLift.prf
ENNReal.canLift
coe_ennreal_top πŸ“–mathematicalβ€”ENNReal.toEReal
Top.top
ENNReal
instTopENNReal
EReal
instTop
β€”β€”
coe_ennreal_zero πŸ“–mathematicalβ€”ENNReal.toEReal
ENNReal
instZeroENNReal
EReal
instZeroEReal
β€”β€”
coe_eq_coe_iff πŸ“–mathematicalβ€”Real.toERealβ€”coe_injective
coe_eq_one πŸ“–mathematicalβ€”Real.toEReal
EReal
instOneEReal
Real
Real.instOne
β€”coe_eq_coe_iff
coe_eq_zero πŸ“–mathematicalβ€”Real.toEReal
EReal
instZeroEReal
Real
Real.instZero
β€”coe_eq_coe_iff
coe_injective πŸ“–mathematicalβ€”Real
EReal
Real.toEReal
β€”StrictMono.injective
coe_strictMono
coe_le_coe πŸ“–mathematicalReal
Real.instLE
EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
Real.toEReal
β€”coe_le_coe_iff
coe_le_coe_iff πŸ“–mathematicalβ€”EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
Real.toEReal
Real
Real.instLE
β€”StrictMono.le_iff_le
coe_strictMono
coe_lt_coe πŸ“–mathematicalReal
Real.instLT
EReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
Real.toEReal
β€”coe_lt_coe_iff
coe_lt_coe_iff πŸ“–mathematicalβ€”EReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
Real.toEReal
Real
Real.instLT
β€”StrictMono.lt_iff_lt
coe_strictMono
coe_lt_top πŸ“–mathematicalβ€”EReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
Real.toEReal
Top.top
instTop
β€”WithBot.coe_lt_coe
WithTop.coe_lt_top
coe_mul πŸ“–mathematicalβ€”Real.toEReal
Real
Real.instMul
EReal
instMul
β€”β€”
coe_natCast πŸ“–mathematicalβ€”Real.toEReal
Real
Real.instNatCast
EReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneEReal
β€”β€”
coe_ne_bot πŸ“–β€”β€”β€”β€”LT.lt.ne'
bot_lt_coe
coe_ne_coe_iff πŸ“–β€”β€”β€”β€”coe_injective
coe_ne_one πŸ“–β€”β€”β€”β€”coe_ne_coe_iff
coe_ne_top πŸ“–β€”β€”β€”β€”LT.lt.ne
coe_lt_top
coe_ne_zero πŸ“–β€”β€”β€”β€”coe_ne_coe_iff
coe_neg' πŸ“–mathematicalβ€”EReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
Real.toEReal
instZeroEReal
Real
Real.instLT
Real.instZero
β€”coe_lt_coe_iff
coe_nnreal_eq_coe_real πŸ“–mathematicalβ€”ENNReal.toEReal
ENNReal.ofNNReal
Real.toEReal
NNReal.toReal
β€”β€”
coe_nnreal_lt_top πŸ“–mathematicalβ€”EReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
ENNReal.toEReal
ENNReal.ofNNReal
Top.top
instTop
β€”coe_lt_top
coe_nnreal_ne_top πŸ“–β€”β€”β€”β€”coe_ne_top
coe_nonneg πŸ“–mathematicalβ€”EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
Real.toEReal
Real
Real.instLE
Real.instZero
β€”coe_le_coe_iff
coe_nonpos πŸ“–mathematicalβ€”EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
Real.toEReal
instZeroEReal
Real
Real.instLE
Real.instZero
β€”coe_le_coe_iff
coe_nsmul πŸ“–mathematicalβ€”Real.toEReal
Real
AddMonoid.toNatSMul
Real.instAddMonoid
EReal
instAddMonoidEReal
β€”map_nsmul
AddMonoidHom.instAddMonoidHomClass
coe_zero
coe_add
coe_one πŸ“–mathematicalβ€”Real.toEReal
Real
Real.instOne
EReal
instOneEReal
β€”β€”
coe_pos πŸ“–mathematicalβ€”EReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
Real.toEReal
Real
Real.instLT
Real.instZero
β€”coe_lt_coe_iff
coe_strictMono πŸ“–mathematicalβ€”StrictMono
Real
EReal
Real.instPreorder
PartialOrder.toPreorder
instPartialOrderEReal
Real.toEReal
β€”StrictMono.comp
WithBot.coe_strictMono
WithTop.coe_strictMono
coe_toENNReal πŸ“–mathematicalEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
ENNReal.toEReal
toENNReal
β€”toENNReal.eq_1
max_eq_left
coe_toReal
coe_toENNReal_eq_max πŸ“–mathematicalβ€”ENNReal.toEReal
toENNReal
EReal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderEReal
instZeroEReal
β€”le_total
coe_toENNReal
max_eq_right
toENNReal_of_nonpos
max_eq_left
coe_ennreal_zero
coe_toReal πŸ“–mathematicalβ€”Real.toEReal
toReal
β€”CanLift.prf
canLift
coe_toReal_le πŸ“–mathematicalβ€”EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
Real.toEReal
toReal
β€”coe_toReal
coe_zero πŸ“–mathematicalβ€”Real.toEReal
Real
Real.instZero
EReal
instZeroEReal
β€”β€”
eq_bot_iff_forall_lt πŸ“–mathematicalβ€”Bot.bot
EReal
instBotEReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
Real.toEReal
β€”bot_lt_coe
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
coe_toReal_le
eq_top_iff_forall_lt πŸ“–mathematicalβ€”Top.top
EReal
instTop
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
Real.toEReal
β€”coe_lt_top
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
le_coe_toReal
exists πŸ“–mathematicalβ€”Bot.bot
EReal
instBotEReal
Top.top
instTop
Real.toEReal
β€”β€”
exists_between_coe_real πŸ“–mathematicalEReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
Real.toERealβ€”exists_between
instDenselyOrderedEReal
not_lt_bot
not_top_lt
exists_rat_btwn_of_lt πŸ“–mathematicalEReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
Real.toEReal
Real
Real.instRatCast
β€”not_top_lt
lt_irrefl
LT.lt.trans
bot_lt_coe
exists_rat_btwn
Real.instIsStrictOrderedRing
Real.instArchimedean
coe_lt_coe_iff
exists_rat_gt
coe_lt_top
exists_rat_lt
forall πŸ“–mathematicalβ€”Bot.bot
EReal
instBotEReal
Top.top
instTop
Real.toEReal
β€”β€”
image_coe_Icc πŸ“–mathematicalβ€”Set.image
Real
EReal
Real.toEReal
Set.Icc
Real.instPreorder
PartialOrder.toPreorder
instPartialOrderEReal
β€”Set.image_comp
WithTop.image_coe_Icc
WithBot.image_coe_Icc
image_coe_Ici πŸ“–mathematicalβ€”Set.image
Real
EReal
Real.toEReal
Set.Ici
Real.instPreorder
Set.Ico
PartialOrder.toPreorder
instPartialOrderEReal
Top.top
instTop
β€”Set.image_comp
WithTop.image_coe_Ici
WithBot.image_coe_Ico
image_coe_Ico πŸ“–mathematicalβ€”Set.image
Real
EReal
Real.toEReal
Set.Ico
Real.instPreorder
PartialOrder.toPreorder
instPartialOrderEReal
β€”Set.image_comp
WithTop.image_coe_Ico
WithBot.image_coe_Ico
image_coe_Iic πŸ“–mathematicalβ€”Set.image
Real
EReal
Real.toEReal
Set.Iic
Real.instPreorder
Set.Ioc
PartialOrder.toPreorder
instPartialOrderEReal
Bot.bot
instBotEReal
β€”Set.image_comp
WithTop.image_coe_Iic
WithBot.image_coe_Iic
image_coe_Iio πŸ“–mathematicalβ€”Set.image
Real
EReal
Real.toEReal
Set.Iio
Real.instPreorder
Set.Ioo
PartialOrder.toPreorder
instPartialOrderEReal
Bot.bot
instBotEReal
β€”Set.image_comp
WithTop.image_coe_Iio
WithBot.image_coe_Iio
image_coe_Ioc πŸ“–mathematicalβ€”Set.image
Real
EReal
Real.toEReal
Set.Ioc
Real.instPreorder
PartialOrder.toPreorder
instPartialOrderEReal
β€”Set.image_comp
WithTop.image_coe_Ioc
WithBot.image_coe_Ioc
image_coe_Ioi πŸ“–mathematicalβ€”Set.image
Real
EReal
Real.toEReal
Set.Ioi
Real.instPreorder
Set.Ioo
PartialOrder.toPreorder
instPartialOrderEReal
Top.top
instTop
β€”Set.image_comp
WithTop.image_coe_Ioi
WithBot.image_coe_Ioo
image_coe_Ioo πŸ“–mathematicalβ€”Set.image
Real
EReal
Real.toEReal
Set.Ioo
Real.instPreorder
PartialOrder.toPreorder
instPartialOrderEReal
β€”Set.image_comp
WithTop.image_coe_Ioo
WithBot.image_coe_Ioo
inductionβ‚‚ πŸ“–β€”Top.top
EReal
instTop
Real.toEReal
instZeroEReal
Bot.bot
instBotEReal
β€”β€”lt_trichotomy
inductionβ‚‚_symm πŸ“–β€”Top.top
EReal
instTop
Real.toEReal
instZeroEReal
Bot.bot
instBotEReal
β€”β€”inductionβ‚‚
instCanLiftENNRealToERealLeOfNat πŸ“–mathematicalβ€”CanLift
EReal
ENNReal
ENNReal.toEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
β€”Eq.ge
range_coe_ennreal
le_coe_toReal πŸ“–mathematicalβ€”EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
Real.toEReal
toReal
β€”coe_toReal
lt_iff_exists_rat_btwn πŸ“–mathematicalβ€”EReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
Real.toEReal
Real
Real.instRatCast
β€”exists_rat_btwn_of_lt
LT.lt.trans
lt_iff_exists_real_btwn πŸ“–mathematicalβ€”EReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
Real.toEReal
β€”exists_rat_btwn_of_lt
LT.lt.trans
mul_comm πŸ“–mathematicalβ€”EReal
instMul
β€”coe_mul
mul_comm
natCast_eq_iff πŸ“–mathematicalβ€”EReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneEReal
β€”coe_coe_eq_natCast
coe_eq_coe_iff
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
natCast_le_iff πŸ“–mathematicalβ€”EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneEReal
β€”coe_coe_eq_natCast
coe_le_coe_iff
Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
natCast_lt_iff πŸ“–mathematicalβ€”EReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneEReal
β€”coe_coe_eq_natCast
coe_lt_coe_iff
Nat.cast_lt
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
natCast_mul πŸ“–mathematicalβ€”EReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneEReal
instMul
β€”coe_coe_eq_natCast
Nat.cast_mul
coe_mul
natCast_ne_bot πŸ“–β€”β€”β€”β€”instLawfulBCmpCompare_mathlib
natCast_ne_iff πŸ“–β€”β€”β€”β€”not_iff_not
natCast_eq_iff
natCast_ne_top πŸ“–β€”β€”β€”β€”instLawfulBCmpCompare_mathlib
one_mul πŸ“–mathematicalβ€”EReal
instMul
instOneEReal
β€”one_pos
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
one_mul
preimage_coe_Icc πŸ“–mathematicalβ€”Set.preimage
Real
EReal
Real.toEReal
Set.Icc
PartialOrder.toPreorder
instPartialOrderEReal
Real.instPreorder
β€”preimage_coe_Ici
preimage_coe_Iic
preimage_coe_Ici πŸ“–mathematicalβ€”Set.preimage
Real
EReal
Real.toEReal
Set.Ici
PartialOrder.toPreorder
instPartialOrderEReal
Real.instPreorder
β€”Set.preimage_comp
WithBot.preimage_coe_Ici
WithTop.preimage_coe_Ici
preimage_coe_Ico πŸ“–mathematicalβ€”Set.preimage
Real
EReal
Real.toEReal
Set.Ico
PartialOrder.toPreorder
instPartialOrderEReal
Real.instPreorder
β€”preimage_coe_Ici
preimage_coe_Iio
preimage_coe_Ico_top πŸ“–mathematicalβ€”Set.preimage
Real
EReal
Real.toEReal
Set.Ico
PartialOrder.toPreorder
instPartialOrderEReal
Top.top
instTop
Set.Ici
Real.instPreorder
β€”Set.Ici_inter_Iio
preimage_coe_Ici
preimage_coe_Iio_top
Set.inter_univ
preimage_coe_Iic πŸ“–mathematicalβ€”Set.preimage
Real
EReal
Real.toEReal
Set.Iic
PartialOrder.toPreorder
instPartialOrderEReal
Real.instPreorder
β€”Set.preimage_comp
WithBot.preimage_coe_Iic
WithTop.preimage_coe_Iic
preimage_coe_Iio πŸ“–mathematicalβ€”Set.preimage
Real
EReal
Real.toEReal
Set.Iio
PartialOrder.toPreorder
instPartialOrderEReal
Real.instPreorder
β€”Set.preimage_comp
WithBot.preimage_coe_Iio
WithTop.preimage_coe_Iio
preimage_coe_Iio_top πŸ“–mathematicalβ€”Set.preimage
Real
EReal
Real.toEReal
Set.Iio
PartialOrder.toPreorder
instPartialOrderEReal
Top.top
instTop
Set.univ
β€”Set.preimage_comp
WithBot.preimage_coe_Iio
WithTop.preimage_coe_Iio_top
preimage_coe_Ioc πŸ“–mathematicalβ€”Set.preimage
Real
EReal
Real.toEReal
Set.Ioc
PartialOrder.toPreorder
instPartialOrderEReal
Real.instPreorder
β€”preimage_coe_Ioi
preimage_coe_Iic
preimage_coe_Ioc_bot πŸ“–mathematicalβ€”Set.preimage
Real
EReal
Real.toEReal
Set.Ioc
PartialOrder.toPreorder
instPartialOrderEReal
Bot.bot
instBotEReal
Set.Iic
Real.instPreorder
β€”Set.Ioi_inter_Iic
preimage_coe_Ioi_bot
preimage_coe_Iic
Set.univ_inter
preimage_coe_Ioi πŸ“–mathematicalβ€”Set.preimage
Real
EReal
Real.toEReal
Set.Ioi
PartialOrder.toPreorder
instPartialOrderEReal
Real.instPreorder
β€”Set.preimage_comp
WithBot.preimage_coe_Ioi
WithTop.preimage_coe_Ioi
preimage_coe_Ioi_bot πŸ“–mathematicalβ€”Set.preimage
Real
EReal
Real.toEReal
Set.Ioi
PartialOrder.toPreorder
instPartialOrderEReal
Bot.bot
instBotEReal
Set.univ
β€”Set.preimage_comp
WithBot.preimage_coe_Ioi_bot
preimage_coe_Ioo πŸ“–mathematicalβ€”Set.preimage
Real
EReal
Real.toEReal
Set.Ioo
PartialOrder.toPreorder
instPartialOrderEReal
Real.instPreorder
β€”preimage_coe_Ioi
preimage_coe_Iio
preimage_coe_Ioo_bot πŸ“–mathematicalβ€”Set.preimage
Real
EReal
Real.toEReal
Set.Ioo
PartialOrder.toPreorder
instPartialOrderEReal
Bot.bot
instBotEReal
Set.Iio
Real.instPreorder
β€”Set.Ioi_inter_Iio
preimage_coe_Ioi_bot
preimage_coe_Iio
Set.univ_inter
preimage_coe_Ioo_bot_top πŸ“–mathematicalβ€”Set.preimage
Real
EReal
Real.toEReal
Set.Ioo
PartialOrder.toPreorder
instPartialOrderEReal
Bot.bot
instBotEReal
Top.top
instTop
Set.univ
β€”Set.Ioi_inter_Iio
preimage_coe_Ioi_bot
preimage_coe_Iio_top
Set.inter_self
preimage_coe_Ioo_top πŸ“–mathematicalβ€”Set.preimage
Real
EReal
Real.toEReal
Set.Ioo
PartialOrder.toPreorder
instPartialOrderEReal
Top.top
instTop
Set.Ioi
Real.instPreorder
β€”Set.Ioi_inter_Iio
preimage_coe_Ioi
preimage_coe_Iio_top
Set.inter_univ
range_coe πŸ“–mathematicalβ€”Set.range
EReal
Real
Real.toEReal
Compl.compl
Set
Set.instCompl
Set.instInsert
Bot.bot
instBotEReal
Set.instSingletonSet
Top.top
instTop
β€”Set.ext
range_coe_ennreal πŸ“–mathematicalβ€”Set.range
EReal
ENNReal
ENNReal.toEReal
Set.Ici
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
β€”Set.Subset.antisymm
Set.range_subset_iff
coe_ennreal_nonneg
LT.lt.not_ge
bot_lt_zero
coe_nonneg
range_coe_eq_Ioo πŸ“–mathematicalβ€”Set.range
EReal
Real
Real.toEReal
Set.Ioo
PartialOrder.toPreorder
instPartialOrderEReal
Bot.bot
instBotEReal
Top.top
instTop
β€”Set.ext
real_coe_toENNReal πŸ“–mathematicalβ€”toENNReal
Real.toEReal
ENNReal.ofReal
β€”β€”
toENNReal_bot πŸ“–mathematicalβ€”toENNReal
Bot.bot
EReal
instBotEReal
ENNReal
instZeroENNReal
β€”toENNReal_of_nonpos
bot_le
toENNReal_coe πŸ“–mathematicalβ€”toENNReal
ENNReal.toEReal
β€”coe_ennreal_top
toENNReal_top
toENNReal.eq_1
toReal_coe_ennreal
ENNReal.ofReal_toReal_eq_iff
toENNReal_eq_toENNReal πŸ“–mathematicalEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
toENNRealβ€”toENNReal_of_ne_top
toENNReal_eq_top_iff πŸ“–mathematicalβ€”toENNReal
Top.top
ENNReal
instTopENNReal
EReal
instTop
β€”β€”
toENNReal_eq_zero_iff πŸ“–mathematicalβ€”toENNReal
ENNReal
instZeroENNReal
EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
β€”ENNReal.ofReal_zero
toENNReal_le_toENNReal πŸ“–mathematicalEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
ENNReal
ENNReal.instPartialOrder
toENNReal
β€”toENNReal_of_ne_top
ENNReal.ofReal_zero
ENNReal.instCanonicallyOrderedAdd
ENNReal.ofReal_le_ofReal
toReal_le_toReal
coe_ne_bot
toENNReal_lt_toENNReal πŸ“–mathematicalEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
Preorder.toLT
ENNReal
ENNReal.instPartialOrder
toENNReal
β€”lt_of_le_of_ne
toENNReal_le_toENNReal
LT.lt.le
LT.lt.ne
toENNReal_eq_toENNReal
LE.le.trans_lt
toENNReal_ne_top_iff πŸ“–β€”β€”β€”β€”Iff.not
toENNReal_eq_top_iff
toENNReal_ne_zero_iff πŸ“–mathematicalβ€”EReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
β€”Iff.not
toENNReal_eq_zero_iff
toENNReal_of_ne_top πŸ“–mathematicalβ€”toENNReal
ENNReal.ofReal
toReal
β€”β€”
toENNReal_of_nonpos πŸ“–mathematicalEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
toENNReal
ENNReal
instZeroENNReal
β€”toENNReal.eq_1
zero_ne_top
top_le_iff
ENNReal.ofReal_of_nonpos
toReal_nonpos
toENNReal_pos_iff πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
toENNReal
EReal
instPartialOrderEReal
instZeroEReal
β€”pos_iff_ne_zero
ENNReal.instCanonicallyOrderedAdd
toENNReal_ne_zero_iff
toENNReal_top πŸ“–mathematicalβ€”toENNReal
Top.top
EReal
instTop
ENNReal
instTopENNReal
β€”β€”
toENNReal_zero πŸ“–mathematicalβ€”toENNReal
EReal
instZeroEReal
ENNReal
instZeroENNReal
β€”toENNReal_of_nonpos
le_rfl
toReal_bot πŸ“–mathematicalβ€”toReal
Bot.bot
EReal
instBotEReal
Real
Real.instZero
β€”β€”
toReal_coe πŸ“–mathematicalβ€”toReal
Real.toEReal
β€”β€”
toReal_coe_ennreal πŸ“–mathematicalβ€”toReal
ENNReal.toEReal
ENNReal.toReal
β€”β€”
toReal_eq_toReal πŸ“–mathematicalβ€”toRealβ€”CanLift.prf
canLift
toReal_eq_zero_iff πŸ“–mathematicalβ€”toReal
Real
Real.instZero
EReal
instZeroEReal
Top.top
instTop
Bot.bot
instBotEReal
β€”β€”
toReal_image_Ioo_bot_zero πŸ“–mathematicalβ€”Set.image
EReal
Real
toReal
Set.Ioo
PartialOrder.toPreorder
instPartialOrderEReal
Bot.bot
instBotEReal
instZeroEReal
Set.Iio
Real.instPreorder
Real.instZero
β€”Set.ext
CanLift.prf
canLift
toReal_image_Ioo_zero_top πŸ“–mathematicalβ€”Set.image
EReal
Real
toReal
Set.Ioo
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
Top.top
instTop
Set.Ioi
Real.instPreorder
Real.instZero
β€”Set.ext
CanLift.prf
canLift
toReal_le_toReal πŸ“–mathematicalEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
Real
Real.instLE
toReal
β€”CanLift.prf
canLift
ne_top_of_le_ne_top
ne_bot_of_le_ne_bot
toReal_ne_zero_iff πŸ“–β€”β€”β€”β€”β€”
toReal_neg πŸ“–mathematicalEReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
Real
Real.instLT
toReal
Real.instZero
β€”CanLift.prf
canLift
toReal_nonneg πŸ“–mathematicalEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
Real
Real.instLE
Real.instZero
toReal
β€”coe_nonneg
toReal_coe
toReal_nonpos πŸ“–mathematicalEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
Real
Real.instLE
toReal
Real.instZero
β€”coe_nonpos
toReal_coe
toReal_one πŸ“–mathematicalβ€”toReal
EReal
instOneEReal
Real
Real.instOne
β€”β€”
toReal_pos πŸ“–mathematicalEReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
Real
Real.instLT
Real.instZero
toReal
β€”CanLift.prf
canLift
toReal_toENNReal πŸ“–mathematicalEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
ENNReal.toReal
toENNReal
toReal
β€”toENNReal_of_ne_top
ENNReal.toReal_ofReal
toReal_nonneg
toReal_top πŸ“–mathematicalβ€”toReal
Top.top
EReal
instTop
Real
Real.instZero
β€”β€”
toReal_zero πŸ“–mathematicalβ€”toReal
EReal
instZeroEReal
Real
Real.instZero
β€”β€”
top_ne_coe πŸ“–β€”β€”β€”β€”LT.lt.ne'
coe_lt_top
top_ne_zero πŸ“–β€”β€”β€”β€”coe_ne_top
zero_lt_top πŸ“–mathematicalβ€”EReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
Top.top
instTop
β€”coe_lt_top
zero_mul πŸ“–mathematicalβ€”EReal
instMul
instZeroEReal
β€”lt_irrefl
MulZeroClass.zero_mul
zero_ne_bot πŸ“–β€”β€”β€”β€”coe_ne_bot
zero_ne_top πŸ“–β€”β€”β€”β€”coe_ne_top

Mathlib.Meta.Positivity

Definitions

NameCategoryTheorems
evalENNRealToEReal πŸ“–CompOpβ€”
evalERealToENNReal πŸ“–CompOpβ€”
evalERealToReal πŸ“–CompOpβ€”
evalRealToEReal πŸ“–CompOpβ€”

Real

Definitions

NameCategoryTheorems
toEReal πŸ“–CompOp
152 mathmath: EReal.nhds_top_basis, EReal.continuousAt_add_coe_bot, EReal.real_coe_toENNReal, Complex.isOpen_re_lt_EReal, EReal.coe_le_coe_iff, EReal.continuousAt_add_coe_top, EReal.image_coe_Icc, EReal.bot_mul_coe_of_neg, ENNReal.log_pos_real', EReal.bot_mul_coe_of_pos, EReal.image_coe_Ioc, EReal.continuousAt_add_coe_coe, EReal.coe_coe_eq_natCast, EReal.forall, EReal.addLECancellable_coe, EReal.image_coe_Ico, LSeriesSummable.abscissaOfAbsConv_le, EReal.nhds_coe, EReal.preimage_coe_Ioi, EReal.image_coe_Iio, EReal.le_coe_toReal, EReal.coe_nonpos, EReal.isOpenEmbedding_coe, EReal.top_mul_coe_of_pos, EReal.add_lt_add_left_coe, EReal.preimage_coe_Ioo, EReal.tendsto_coe_atTop, EReal.coe_neg, EReal.nhds_bot_basis, LSeries_deriv_eqOn, EReal.sub_add_cancel_left, LSeries_analyticOnNhd, EReal.nhds_top', EReal.canLift, EReal.bot_lt_coe, EReal.preimage_coe_Ioo_top, EReal.coe_natCast, EReal.mem_nhds_bot_iff, EReal.range_coe_eq_Ioo, EReal.image_coe_Iic, EReal.coe_sub, EReal.coe_zsmul, ENNReal.log_of_nnreal, LSeries.abscissaOfAbsConv_le_of_forall_lt_LSeriesSummable, EReal.preimage_coe_Icc, EReal.sub_add_cancel, ENNReal.log_pos_real, EReal.sign_coe, EReal.coe_le_coe, EReal.abs_coe_lt_top, EReal.add_sub_cancel_left, EReal.coe_zero, EReal.ge_of_forall_gt_iff_ge, EReal.top_sub_coe, EReal.eq_bot_iff_forall_lt, EReal.exp_coe, EReal.range_coe, EReal.continuousAt_add_bot_coe, EReal.preimage_coe_Ici, EReal.image_coe_Ioo, EReal.ENNReal.rpow_eq_exp_mul_log, EReal.coe_coe_sign, EReal.preimage_coe_Ioi_bot, EReal.preimage_coe_Ioc, continuous_coe_real_ereal, EReal.image_coe_Ici, EReal.coe_neg', EReal.coe_toReal, EReal.coe_mul_top_of_pos, EReal.coe_eq_coe_iff, EReal.top_add_coe, EReal.add_sub_cancel_right, EReal.tendsto_coe, EReal.coe_nonneg, EReal.preimage_coe_Ioo_bot, EReal.coe_injective, MeasureTheory.exists_lt_lowerSemicontinuous_integral_lt, EReal.coe_strictMono, EReal.coe_add_top, EReal.preimage_coe_Ico_top, LSeries.abscissaOfAbsConv_le_of_le_const_mul_rpow, EReal.tendsto_coe_nhds_bot_iff, EReal.tendsto_coe_atBot, Complex.isOpen_im_gt_EReal, EReal.exists, LSeries_differentiableOn, EReal.continuousAt_add_top_coe, EReal.toReal_coe, EReal.preimage_coe_Iio, ENNReal.log_rpow, EReal.coe_ennreal_toReal, EReal.continuous_coe_iff, EReal.preimage_coe_Ioo_bot_top, EReal.tendsto_coe_nhds_top_iff, EReal.coe_pos, EReal.le_of_forall_lt_iff_le, measurable_coe_real_ereal, EReal.preimage_coe_Iio_top, EReal.coe_eq_zero, EReal.nhds_bot', Complex.isOpen_im_lt_EReal, EReal.exp_mul, EReal.tendsto_nhds_top_iff_real, EReal.coe_nsmul, LSeries_analyticOn, EReal.coe_mul, EReal.abs_def, EReal.coe_nnreal_eq_coe_real, EReal.preimage_coe_Iic, EReal.sub_add_cancel_right, EReal.coe_mul_bot_of_neg, EReal.coe_lt_coe, EReal.coe_add, EReal.coe_pow, EReal.coe_one, EReal.lt_iff_exists_rat_btwn, EReal.preimage_coe_Ioc_bot, EReal.coe_inv, EReal.coe_eq_one, EReal.preimage_coe_Ico, EReal.coe_real_ereal_eq_coe_toNNReal_sub_coe_toNNReal, EReal.coe_sub_bot, EReal.coe_div, EReal.coe_abs, EReal.measurableEmbedding_coe, EReal.isEmbedding_coe, EReal.add_lt_add_right_coe, EReal.coe_mul_bot_of_pos, EReal.denseRange_ratCast, Measurable.coe_real_ereal, EReal.nhds_coe_coe, ENNReal.log_ofReal_of_pos, EReal.exists_between_coe_real, EReal.coe_ennreal_ofReal, MeasureTheory.exists_upperSemicontinuous_lt_integral_gt, EReal.nhdsWithin_top, EReal.image_coe_Ioi, EReal.exists_rat_btwn_of_lt, EReal.eq_top_iff_forall_lt, EReal.nhdsWithin_bot, Complex.isOpen_re_gt_EReal, EReal.coe_mul_top_of_neg, EReal.coe_toReal_le, AEMeasurable.coe_real_ereal, EReal.coe_lt_coe_iff, EReal.mem_nhds_top_iff, EReal.coe_lt_top, LSeries.abscissaOfAbsConv_le_of_isBigO_rpow, EReal.tendsto_nhds_bot_iff_real, EReal.lt_iff_exists_real_btwn, ENNReal.log_ofReal, EReal.top_mul_coe_of_neg

(root)

Definitions

NameCategoryTheorems
EReal πŸ“–CompOp
558 mathmath: EReal.nhds_top_basis, LinearGrowth.linearGrowthSup_zero, LinearGrowth.linearGrowthSup_top, EReal.continuousAt_add_coe_bot, Dynamics.netEntropyEntourage_monotone, Dynamics.coverEntropyInfEntourage_le_netEntropyInfEntourage, EReal.exp_bot, Dynamics.coverEntropyEntourage_le_coverEntropyInfEntourage, EReal.one_lt_exp_iff, EReal.inv_strictAntiOn, Complex.isOpen_re_lt_EReal, EReal.coe_le_coe_iff, LSeries.abscissaOfAbsConv_one, Dynamics.coverEntropyInfEntourage_antitone, EReal.continuousAt_add_coe_top, EReal.image_coe_Icc, EReal.bot_mul_coe_of_neg, ENNReal.log_lt_log_iff, EReal.natCast_mul, EReal.div_eq_inv_mul, EReal.coe_ennreal_add, Monotone.expGrowthSup_nonneg, EReal.coe_ennreal_le_coe_ennreal_iff, EReal.sub_nonneg, EReal.neg_nonneg, EReal.abs_neg, EReal.instMeasurableMulβ‚‚, LinearGrowth.linearGrowthInf_add_le', ENNReal.log_eq_bot_iff, LinearGrowth.le_linearGrowthSup_add, EReal.mul_nonpos_iff, EReal.sub_top, EReal.bot_mul_coe_of_pos, EReal.toENNReal_eq_zero_iff, ENNReal.log_le_log_iff, EReal.toENNReal_top, LinearGrowth.linearGrowthSup_add_le, EReal.image_coe_Ioc, measurable_ereal_toENNReal, EReal.exp_strictMono, ExpGrowth.expGrowthInf_of_eventually_ge, EReal.continuousAt_add_coe_coe, ENNReal.log_lt_zero_iff, EReal.coe_ennreal_pow, LSeries_injOn, EReal.coe_coe_eq_natCast, EReal.measurable_exp, LSeries_eventually_eq_zero_iff', EReal.forall, ExpGrowth.expGrowthInf_exp, Monotone.expGrowthInf_comp_mul, EReal.div_mul_div_comm, EReal.neg_strictAnti, Dynamics.coverEntropy_iUnion_le, EReal.addLECancellable_coe, ExpGrowth.expGrowthInf_le_iff, EReal.image_coe_Ico, LSeriesSummable.abscissaOfAbsConv_le, EReal.instT2Space, EReal.neg_lt_comm, EReal.toENNReal_pos_iff, measurable_ereal_toReal, EReal.top_sub, EReal.nhds_coe, EReal.sign_eq_and_abs_eq_iff_eq, LinearGrowth.le_linearGrowthSup_add', Dynamics.netEntropyInfEntourage_univ, ExpGrowth.expGrowthSup_add, Dynamics.coverEntropyInfEntourage_univ, EReal.preimage_coe_Ioi, EReal.neg_eq_top_iff, LinearGrowth.linearGrowthInf_bot, Dynamics.netEntropyEntourage_le_coverEntropyEntourage, EReal.continuousAt_add_bot_bot, EReal.abs_eq_zero_iff, EReal.instPosMulMono, EReal.expOrderIso_symm, Dynamics.coverEntropyEntourage_univ, EReal.image_coe_Iio, ArithmeticFunction.abscissaOfAbsConv_zeta, EReal.coe_ennreal_mul_top, EReal.le_coe_toReal, ExpGrowth.expGrowthInf_eventually_monotone, EReal.iSup_add_le_add_iSup, EReal.sub_self, EReal.coe_nonpos, LinearGrowth.linearGrowthSup_bot, EReal.isOpenEmbedding_coe, EReal.top_mul_coe_of_pos, EReal.add_lt_top, ENNReal.continuous_log, ExpGrowth.expGrowthSup_sum, LinearGrowth.linearGrowthInf_biInf, EReal.tendsto_exp_nhds_zero_nhds_one, EReal.neg_le_neg_iff, EReal.top_mul_coe_ennreal, EReal.preimage_coe_Ioo, Dynamics.coverEntropy_monotone, ExpGrowth.expGrowthSup_def, EReal.tendsto_coe_atTop, EReal.isClosedEmbedding_coe_ennreal, EReal.coe_neg, ENNReal.log_top, EReal.bot_add, ExpGrowth.expGrowthSup_biSup, ENNReal.log_strictMono, ExpGrowth.expGrowthInf_mul_le, EReal.nhds_bot_basis, LSeries_deriv_eqOn, EReal.sub_add_cancel_left, LSeries.abscissaOfAbsConv_le_of_le_const, EReal.one_le_exp_iff, LSeries_analyticOnNhd, Dynamics.netEntropyEntourage_antitone, EReal.exists_nat_ge_mul, EReal.neg_sub, EReal.nhds_top', EReal.canLift, EReal.bot_lt_coe, EReal.abs_mul_sign, Dynamics.coverEntropyEntourage_union, LinearGrowth.linearGrowthInf_top, Dynamics.coverEntropyInf_eq_iSup_netEntropyInfEntourage, EReal.instMeasurableAddβ‚‚, EReal.inv_inv, ArithmeticFunction.vonMangoldt.abscissaOfAbsConv_residueClass_le_one, EReal.preimage_coe_Ioo_top, EReal.toReal_zero, EReal.limsup_neg, EReal.mul_div_mul_cancel, EReal.bot_lt_add_iff, EReal.instMulPosMono, EReal.coe_natCast, EReal.tendsto_toReal_atTop, EReal.top_add_of_ne_bot, EReal.instT5Space, EReal.tendsto_toReal_atBot, LinearGrowth.linearGrowthInf_const_mul_self, Dynamics.coverEntropyEntourage_le_netEntropyEntourage, EReal.one_mul, ExpGrowth.expGrowthInf_comp_nonneg, EReal.mem_nhds_bot_iff, EReal.add_bot, EReal.range_coe_ennreal, EReal.top_sub_bot, Dynamics.netEntropyEntourage_empty, ExpGrowth.expGrowthInf_inv, ExpGrowth.expGrowthSup_inv, Dynamics.coverEntropy_union, EReal.range_coe_eq_Ioo, LinearGrowth.linearGrowthInf_zero, EReal.neg_eq_zero_iff, ExpGrowth.expGrowthInf_le_expGrowthSup_of_frequently_le, EReal.image_coe_Iic, Dynamics.coverEntropyInfEntourage_le_coverEntropyInf, Dynamics.netEntropyInfEntourage_nonneg, EReal.instCanLiftENNRealToERealLeOfNat, EReal.measurable_of_measurable_real, EReal.abs_top, Measurable.coe_ereal_ennreal, EReal.coe_sub, EReal.coe_ennreal_zero, ENNReal.log_le_log, Dynamics.netEntropyInfEntourage_le_netEntropyEntourage, EReal.toENNReal_eq_top_iff, LSeries.abscissaOfAbsConv_le_one_of_isBigO_one, Dynamics.coverEntropyInfEntourage_le_coverEntropyEntourage, EReal.coe_zsmul, ExpGrowth.expGrowthInf_monotone, Dynamics.coverEntropyEntourage_image_le, LSeries.abscissaOfAbsConv_le_of_forall_lt_LSeriesSummable, EReal.tendsto_coe_ennreal, EReal.expHomeomorph_symm, EReal.preimage_coe_Icc, EReal.sign_mul, ENNReal.zero_lt_log_iff, Dynamics.coverEntropyInf_image_le_of_uniformContinuous, EReal.bot_sub, EReal.sub_add_cancel, EReal.bot_mul_bot, EReal.min_neg_neg, ENNReal.log_eq_one_iff, LinearGrowth.linearGrowthSup_biSup, EReal.exp_lt_exp_iff, EReal.sign_coe, EReal.le_liminf_add, EReal.inv_neg, EReal.neg_add, ExpGrowth.expGrowthSup_const, ENNReal.logOrderIso_symm, EReal.exp_monotone, LinearGrowth.linearGrowthSup_inv, EReal.coe_le_coe, LinearGrowth.linearGrowthInf_const, EReal.mul_div, EReal.mul_ne_top, ENNReal.log_monotone, EReal.liminf_add_le, EReal.nsmul_eq_mul, EReal.add_sub_cancel_left, LinearGrowth.linearGrowthSup_le_iff, ExpGrowth.le_expGrowthInf_comp, EReal.coe_zero, EReal.ge_of_forall_gt_iff_ge, Dynamics.coverEntropy_biUnion_finset, LinearGrowth.linearGrowthSup_const_mul_self, EReal.instSecondCountableTopology, EReal.top_sub_coe, Dynamics.le_coverEntropyEntourage_image, EReal.eq_bot_iff_forall_lt, EReal.tendsto_const_div_atTop_nhds_zero_nat, Dynamics.coverEntropyEntourage_monotone, EReal.range_coe, EReal.mul_ne_bot, EReal.mul_nonneg_iff, EReal.continuousAt_add_bot_coe, EReal.top_add_iff_ne_bot, EReal.abs_mul, Dynamics.coverEntropy_antitone, EReal.sub_lt_iff, ExpGrowth.expGrowthInf_le_of_eventually_le, Measurable.ennreal_log, EReal.preimage_coe_Ici, EReal.image_coe_Ioo, EReal.natCast_lt_iff, Dynamics.coverEntropyInf_monotone, ENNReal.log_surjective, EReal.continuousOn_toReal, EReal.exp_eq_top_iff, ExpGrowth.expGrowthSup_zero, LinearGrowth.linearGrowthSup_sup, continuous_coe_ennreal_ereal, EReal.toReal_neg_eq, Dynamics.coverEntropy_iUnion_of_finite, EReal.ENNReal.rpow_eq_exp_mul_log, EReal.mul_neg_iff, ExpGrowth.expGrowthSup_exp, EReal.tendsto_exp_nhds_top_nhds_top, ExpGrowth.expGrowthSup_of_eventually_ge, LinearGrowth.linearGrowthInf_inf, EReal.coe_coe_sign, EReal.preimage_coe_Ioi_bot, EReal.neg_lt_zero, EReal.coe_toENNReal_eq_max, EReal.bot_lt_zero, EReal.div_zero, EReal.preimage_coe_Ioc, Dynamics.netEntropyInfEntourage_monotone, continuous_coe_real_ereal, EReal.image_coe_Ici, EReal.toReal_top, EReal.coe_neg', Dynamics.coverEntropyInf_nonneg, Dynamics.IsDynCoverOf.coverEntropyEntourage_le_log_card_div, Dynamics.coverEntropyEntourage_finite_of_isCompact_invariant, LinearGrowth.linearGrowthSup_const, EReal.coe_ennreal_eq_zero, LSeries.abscissaOfAbsConv_binop_le, EReal.sign_bot, EReal.bot_lt_inv, LSeries.abscissaOfAbsConv_add_le, EReal.add_top_of_ne_bot, ExpGrowth.expGrowthSup_mul_le, ENNReal.log_bijective, LinearGrowth.linearGrowthInf_natCast_nonneg, ExpGrowth.expGrowthInf_inf, Dynamics.coverEntropy_image_le_of_uniformContinuousOn_invariant, measurable_coe_ennreal_ereal, EReal.coe_mul_top_of_pos, EReal.top_add_coe, LSeries.abscissaOfAbsConv_le_of_forall_lt_LSeriesSummable', EReal.exp_le_one_iff, EReal.sub_nonpos, EReal.natCast_eq_iff, EReal.le_neg, EReal.bot_lt_coe_ennreal, EReal.toReal_add, ENNReal.log_pow, Dynamics.coverEntropyInf_antitone, EReal.add_sub_cancel_right, Dynamics.coverEntropyEntourage_le_log_coverMincard_div, EReal.add_iInf_le_iInf_add, EReal.tendsto_coe, EReal.neg_le_zero, EReal.coe_nonneg, ExpGrowth.le_expGrowthInf_add, EReal.toReal_image_Ioo_bot_zero, EReal.neg_eq_bot_iff, LSeries.abscissaOfAbsConv_convolution_le, Dynamics.coverEntropyInf_eq_iSup_basis_netEntropyInfEntourage, EReal.zero_lt_exp_iff, EReal.tendsto_exp_nhds_bot_nhds_zero, EReal.preimage_coe_Ioo_bot, ENNReal.log_lt_top_iff, DirichletCharacter.absicssaOfAbsConv_eq_one, ExpGrowth.le_expGrowthInf_iff, ExpGrowth.expGrowthSup_comp_le, EReal.abs_zero, EReal.coe_injective, EReal.div_self, EReal.bot_mul_top, MeasureTheory.exists_lt_lowerSemicontinuous_integral_lt, EReal.sub_self_le_zero, EReal.coe_ennreal_eq_one, EReal.coe_strictMono, EReal.coe_ennreal_lt_coe_ennreal_iff, Dynamics.coverEntropy_image_le_of_uniformContinuous, ExpGrowth.expGrowthSup_comp_nonneg, EReal.coe_add_top, ENNReal.log_le_zero_iff, EReal.liminf_neg, EReal.preimage_coe_Ico_top, LSeries.abscissaOfAbsConv_le_of_le_const_mul_rpow, ENNReal.continuous_exp, EReal.tendsto_coe_nhds_bot_iff, EReal.sub_neg, EReal.tendsto_coe_atBot, Dynamics.netEntropyInfEntourage_le_coverEntropyInfEntourage, ExpGrowth.expGrowthInf_iInf, Complex.isOpen_im_gt_EReal, ExpGrowth.expGrowthSup_eventually_monotone, EReal.max_neg_neg, instPolishSpaceEReal, EReal.exists, EReal.toReal_bot, LSeries_differentiableOn, EReal.inv_top, EReal.top_mul_bot, Monotone.expGrowthInf_comp_le, EReal.sub_bot, Dynamics.coverEntropy_nonneg, EReal.instNoZeroDivisors, EReal.continuousAt_add_top_coe, EReal.borelSpace, Dynamics.coverEntropyEntourage_antitone, EReal.sign_top, LinearGrowth.linearGrowthInf_iInf, EReal.toENNReal_zero, EReal.preimage_coe_Iio, ENNReal.log_rpow, EReal.continuous_coe_iff, EReal.continuous_toENNReal, EReal.mul_comm, ENNReal.log_eq_top_iff, EReal.preimage_coe_Ioo_bot_top, ENNReal.measurable_log, EReal.toENNReal_bot, EReal.lt_sub_iff_add_lt, Monotone.expGrowthInf_nonneg, EReal.exp_zero, EReal.tendsto_coe_nhds_top_iff, ExpGrowth.expGrowthInf_biInf, LinearGrowth.linearGrowthSup_iSup, Dynamics.coverEntropy_eq_iSup_basis, ENNReal.zero_le_log_iff, EReal.instMulPosReflectLT, EReal.div_top, EReal.neg_pos, EReal.coe_pos, EReal.mul_div_cancel, EReal.le_iff_sign, Dynamics.coverEntropy_eq_iSup_basis_netEntropyEntourage, EReal.mul_eq_bot, EReal.toReal_mul, EReal.isEmbedding_coe_ennreal, EReal.le_of_forall_lt_iff_le, ENNReal.toEReal_sub, measurable_coe_real_ereal, EReal.preimage_coe_Iio_top, Dynamics.coverEntropy_biUnion_le, ENNReal.log_one, AEMeasurable.coe_ereal_ennreal, EReal.coe_eq_zero, EReal.nhds_bot', EReal.inv_bot, EReal.toReal_one, ENNReal.log_zero, Complex.isOpen_im_lt_EReal, Dynamics.coverEntropyEntourage_nonneg, EReal.exp_mul, ENNReal.logHomeomorph_symm, Dynamics.netEntropyInfEntourage_le_coverEntropyInf, LinearGrowth.le_linearGrowthInf_iff, EReal.tendsto_nhds_top_iff_real, EReal.nhds_bot, EReal.coe_nsmul, ExpGrowth.le_expGrowthSup_mul', Dynamics.coverEntropyInfEntourage_image_le, Dynamics.coverEntropy_eq_iSup_netEntropyEntourage, LSeries_analyticOn, EReal.lt_neg_comm, EReal.exp_lt_one_iff, EReal.lowerSemicontinuous_add, EReal.toReal_image_Ioo_zero_top, EReal.coe_mul, EReal.inv_lt_top, ExpGrowth.expGrowthInf_def, Dynamics.coverEntropyInfEntourage_closure, ExpGrowth.expGrowthInf_mul_le', EReal.coe_ennreal_injective, LinearGrowth.linearGrowthInf_le_iff, EReal.le_limsup_add, Dynamics.coverEntropyEntourage_closure, EReal.top_mul_top, Dynamics.netEntropyInfEntourage_empty, EReal.mul_div_left_comm, Dynamics.coverEntropyInf_iUnion_le, EReal.preimage_coe_Iic, ENNReal.log_injective, EReal.exp_nmul, ExpGrowth.expGrowthSup_top, EReal.continuousAt_add, EReal.toENNReal_ne_zero_iff, ExpGrowth.expGrowthInf_const, Dynamics.coverEntropyInf_empty, LSeries.abscissaOfAbsConv_sub_le, EReal.sub_add_cancel_right, EReal.coe_mul_bot_of_neg, EReal.coe_lt_coe, EReal.tendsto_toReal, EReal.exp_lt_top_iff, EReal.coe_add, EReal.zero_div, EReal.expOrderIso_apply, ENNReal.bot_lt_log_iff, EReal.coe_pow, EReal.coe_one, EReal.continuousAt_add_top_top, EReal.toReal_eq_zero_iff, EReal.exp_add, EReal.sign_mul_inv_abs, Dynamics.netEntropyEntourage_nonneg, EReal.coe_ennreal_strictMono, EReal.lt_iff_exists_rat_btwn, EReal.preimage_coe_Ioc_bot, LinearGrowth.linearGrowthInf_add_le, EReal.coe_inv, EReal.coe_eq_one, ENNReal.logHomeomorph_apply, Dynamics.coverEntropyInf_biUnion_le, EReal.div_mul_cancel, ExpGrowth.expGrowthSup_le_iff, EReal.sign_mul_abs, EReal.sub_pos, ExpGrowth.expGrowthInf_top, Dynamics.coverEntropyEntourage_le_coverEntropy, EReal.coe_ennreal_one, EReal.sub_le_iff_le_add, EReal.natCast_div_le, EReal.preimage_coe_Ico, EReal.coe_real_ereal_eq_coe_toNNReal_sub_coe_toNNReal, EReal.nhds_top, instIsOrderedAddMonoidEReal, EReal.coe_sub_bot, EReal.mul_div_right, Dynamics.netEntropyEntourage_le_coverEntropy, EReal.coe_div, EReal.tendsto_mul, EReal.measurableEmbedding_coe, Dynamics.coverEntropyInf_image_le_of_uniformContinuousOn_invariant, EReal.top_add_top, EReal.mul_pos_iff, EReal.isEmbedding_coe, EReal.coe_mul_bot_of_pos, EReal.denseRange_ratCast, EReal.toReal_sub, EReal.exp_eq_zero_iff, EReal.sign_neg, EReal.mul_inv, Dynamics.le_coverEntropyInfEntourage_image, EReal.continuous_coe_ennreal_iff, EReal.div_eq_iff, EReal.abs_bot, ExpGrowth.expGrowthSup_sup, EReal.zero_lt_top, ENNReal.log_mul_add, Measurable.coe_real_ereal, EReal.add_top_iff_ne_bot, ExpGrowth.expGrowthSup_le_of_eventually_le, Dynamics.netEntropyInfEntourage_antitone, ExpGrowth.expGrowthInf_zero, EReal.neg_le, EReal.nhds_coe_coe, EReal.zero_mul, EReal.coe_ennreal_nsmul, ENNReal.log_lt_log, EReal.coe_ennreal_nonneg, EReal.coe_nnreal_lt_top, ENNReal.log_inv, EReal.neg_mul, Monotone.expGrowthSup_comp_mul, EReal.coe_ennreal_pos_iff_ne_zero, EReal.coe_ennreal_mul, instZeroLEOneClassEReal, EReal.continuousAt_mul, Dynamics.coverEntropyInfEntourage_nonneg, Dynamics.coverEntropyEntourage_empty, ExpGrowth.le_expGrowthSup_mul, Dynamics.coverEntropy_empty, Dynamics.coverEntropyInfEntourage_empty, MeasureTheory.exists_upperSemicontinuous_lt_integral_gt, EReal.instContinuousNeg, EReal.nhdsWithin_top, ExpGrowth.expGrowthSup_iSup, EReal.image_coe_Ioi, EReal.le_sub_iff_add_le, EReal.add_eq_bot_iff, instDenselyOrderedEReal, EReal.expHomeomorph_apply, instCharZeroEReal, EReal.mul_eq_top, ExpGrowth.le_expGrowthInf_mul, LinearGrowth.le_linearGrowthSup_iff, ExpGrowth.le_expGrowthSup_iff, ExpGrowth.expGrowthInf_le_expGrowthSup, EReal.exp_le_exp_iff, EReal.natCast_le_iff, LSeries_eq_zero_iff, Dynamics.coverEntropyInf_eq_iSup_basis, EReal.eq_top_iff_forall_lt, EReal.neg_top, EReal.nhdsWithin_bot, Complex.isOpen_re_gt_EReal, EReal.sign_mul_inv_abs', ENNReal.logOrderIso_apply, ExpGrowth.expGrowthSup_monotone, EReal.div_div, Dynamics.coverEntropyInfEntourage_monotone, EReal.coe_ennreal_eq_top_iff, EReal.coe_mul_top_of_neg, EReal.toENNReal_add_le, EReal.div_bot, EReal.coe_ennreal_top, LinearGrowth.le_linearGrowthInf_add, EReal.inv_zero, EReal.neg_bot, EReal.exp_neg, EReal.coe_toReal_le, EReal.exp_top, AEMeasurable.coe_real_ereal, EReal.coe_lt_coe_iff, EReal.mem_nhds_top_iff, Dynamics.coverEntropyInf_le_coverEntropy, EReal.limsup_add_le, EReal.coe_lt_top, Dynamics.netEntropyEntourage_univ, EReal.instOrderTopology, EReal.neg_lt_neg_iff, EReal.coe_ennreal_pos, LSeries.abscissaOfAbsConv_le_of_isBigO_rpow, EReal.tendsto_nhds_bot_iff_real, EReal.instPosMulReflectLT, EReal.lt_iff_exists_real_btwn, ArithmeticFunction.abscissaOfAbsConv_moebius, ENNReal.log_ofReal, EReal.top_mul_coe_of_neg, LinearGrowth.linearGrowthInf_neg, Monotone.le_expGrowthSup_comp
instAddCommMonoidEReal πŸ“–CompOp
81 mathmath: EReal.continuousAt_add_coe_bot, EReal.continuousAt_add_coe_top, EReal.coe_ennreal_add, LinearGrowth.linearGrowthInf_add_le', EReal.liminf_add_top_of_ne_bot, LinearGrowth.le_linearGrowthSup_add, LinearGrowth.linearGrowthSup_add_le, EReal.continuousAt_add_coe_coe, EReal.left_distrib_of_nonneg, EReal.addLECancellable_coe, EReal.add_lt_add_of_lt_of_le', LinearGrowth.le_linearGrowthSup_add', EReal.continuousAt_add_bot_bot, EReal.add_pos_of_pos_of_nonneg, EReal.iSup_add_le_add_iSup, EReal.add_lt_add_left_coe, EReal.add_lt_top, EReal.bot_add, ExpGrowth.expGrowthInf_mul_le, EReal.sub_add_cancel_left, EReal.neg_sub, EReal.instMeasurableAddβ‚‚, EReal.bot_lt_add_iff, EReal.top_add_of_ne_bot, EReal.add_bot, EReal.right_distrib_of_nonneg_of_ne_top, EReal.sub_add_cancel, EReal.le_liminf_add, EReal.neg_add, EReal.add_le_of_le_sub, EReal.liminf_add_le, EReal.add_sub_cancel_left, EReal.continuousAt_add_bot_coe, EReal.top_add_iff_ne_bot, EReal.sub_lt_iff, EReal.add_pos, EReal.add_top_of_ne_bot, ExpGrowth.expGrowthSup_mul_le, EReal.top_add_coe, EReal.toReal_add, EReal.add_sub_cancel_right, EReal.add_iInf_le_iInf_add, EReal.add_lt_add_of_lt_of_le, EReal.coe_add_top, LSeries.abscissaOfAbsConv_le_of_le_const_mul_rpow, EReal.continuousAt_add_top_coe, EReal.lt_sub_iff_add_lt, ExpGrowth.le_expGrowthSup_mul', EReal.lowerSemicontinuous_add, ExpGrowth.expGrowthInf_mul_le', EReal.add_div_of_nonneg_right, EReal.le_limsup_add, EReal.left_distrib_of_nonneg_of_ne_top, EReal.continuousAt_add, EReal.sub_add_cancel_right, EReal.toENNReal_add, EReal.coe_add, EReal.continuousAt_add_top_top, EReal.exp_add, LinearGrowth.linearGrowthInf_add_le, EReal.sub_le_iff_le_add, instIsOrderedAddMonoidEReal, EReal.add_lt_add, EReal.top_add_top, EReal.add_lt_add_right_coe, EReal.right_distrib_of_nonneg, EReal.div_right_distrib_of_nonneg, ENNReal.log_mul_add, EReal.liminf_add_gt_of_gt, EReal.add_top_iff_ne_bot, EReal.limsup_add_bot_of_ne_top, EReal.add_lt_of_lt_sub, ExpGrowth.le_expGrowthSup_mul, EReal.le_sub_iff_add_le, EReal.add_eq_bot_iff, ExpGrowth.le_expGrowthInf_mul, EReal.limsup_add_le_of_le, EReal.toENNReal_add_le, LinearGrowth.le_linearGrowthInf_add, EReal.limsup_add_le, LSeries.abscissaOfAbsConv_le_of_isBigO_rpow
instAddCommMonoidWithOneEReal πŸ“–CompOp
80 mathmath: LinearGrowth.linearGrowthSup_zero, LinearGrowth.linearGrowthSup_top, EReal.natCast_mul, ExpGrowth.eventually_le_exp, LinearGrowth.linearGrowthInf_add_le', LinearGrowth.le_linearGrowthSup_add, LinearGrowth.linearGrowthSup_add_le, EReal.coe_coe_eq_natCast, ExpGrowth.expGrowthInf_exp, Monotone.expGrowthInf_comp_mul, ExpGrowth.expGrowthInf_le_iff, LinearGrowth.le_linearGrowthSup_add', LinearGrowth.linearGrowthInf_bot, LinearGrowth.linearGrowthSup_bot, LinearGrowth.linearGrowthInf_biInf, ExpGrowth.expGrowthSup_def, EReal.exists_nat_ge_mul, LinearGrowth.linearGrowthInf_top, EReal.coe_natCast, LinearGrowth.linearGrowthInf_const_mul_self, LinearGrowth.linearGrowthInf_zero, LinearGrowth.linearGrowthSup_le_of_eventually_le, LinearGrowth.linearGrowthSup_biSup, LinearGrowth.linearGrowthSup_inv, LinearGrowth.linearGrowthInf_const, EReal.nsmul_eq_mul, LinearGrowth.linearGrowthSup_le_iff, ExpGrowth.le_expGrowthInf_comp, LinearGrowth.linearGrowthSup_const_mul_self, EReal.tendsto_const_div_atTop_nhds_zero_nat, EReal.natCast_lt_iff, LinearGrowth.linearGrowthSup_sup, ExpGrowth.expGrowthSup_exp, LinearGrowth.linearGrowthInf_inf, Dynamics.IsDynCoverOf.coverEntropyEntourage_le_log_card_div, LinearGrowth.linearGrowthSup_eventually_monotone, LinearGrowth.linearGrowthSup_const, LinearGrowth.linearGrowthInf_natCast_nonneg, LinearGrowth.linearGrowthSup_comp_nonneg, EReal.natCast_eq_iff, ENNReal.log_pow, Dynamics.coverEntropyEntourage_le_log_coverMincard_div, Monotone.linearGrowthInf_nonneg, ExpGrowth.le_expGrowthInf_iff, ExpGrowth.expGrowthSup_comp_le, ExpGrowth.frequently_le_exp, LinearGrowth.linearGrowthInf_eventually_monotone, ExpGrowth.frequently_exp_le, Monotone.expGrowthInf_comp_le, LinearGrowth.linearGrowthInf_iInf, LinearGrowth.linearGrowthInf_monotone, ExpGrowth.eventually_exp_le, LinearGrowth.linearGrowthSup_iSup, LinearGrowth.linearGrowthInf_comp_nonneg, LinearGrowth.le_linearGrowthInf_iff, ExpGrowth.expGrowthInf_def, LinearGrowth.linearGrowthInf_le_of_eventually_le, LinearGrowth.linearGrowthInf_le_iff, LinearGrowth.linearGrowthSup_comp_le, Monotone.linearGrowthInf_comp_le, Monotone.linearGrowthInf_comp_mul, EReal.exp_nmul, LinearGrowth.linearGrowthInf_add_le, ExpGrowth.expGrowthSup_le_iff, EReal.natCast_div_le, Monotone.linearGrowthSup_nonneg, Monotone.linearGrowthSup_comp_mul, Monotone.le_linearGrowthSup_comp, Monotone.expGrowthSup_comp_mul, LinearGrowth.linearGrowthSup_monotone, LinearGrowth.linearGrowthInf_le_linearGrowthSup_of_frequently_le, LinearGrowth.le_linearGrowthInf_comp, instCharZeroEReal, LinearGrowth.le_linearGrowthSup_iff, ExpGrowth.le_expGrowthSup_iff, EReal.natCast_le_iff, LinearGrowth.le_linearGrowthInf_add, LinearGrowth.EReal.eventually_atTop_exists_nat_between, LinearGrowth.linearGrowthInf_neg, Monotone.le_expGrowthSup_comp
instAddMonoidEReal πŸ“–CompOp
3 mathmath: EReal.nsmul_eq_mul, EReal.coe_nsmul, EReal.coe_ennreal_nsmul
instBotEReal πŸ“–CompOp
89 mathmath: EReal.continuousAt_add_coe_bot, EReal.exp_bot, EReal.bot_mul_coe_of_neg, ENNReal.log_eq_bot_iff, EReal.sub_top, EReal.bot_mul_coe_of_pos, EReal.forall, EReal.top_div_of_neg_ne_bot, EReal.neg_eq_top_iff, LinearGrowth.linearGrowthInf_bot, EReal.continuousAt_add_bot_bot, EReal.image_coe_Iio, LinearGrowth.linearGrowthSup_bot, EReal.bot_div_of_neg_ne_bot, EReal.bot_add, EReal.nhds_bot_basis, EReal.canLift, EReal.bot_lt_coe, EReal.bot_lt_add_iff, EReal.tendsto_toReal_atBot, EReal.mem_nhds_bot_iff, EReal.add_bot, EReal.top_sub_bot, Dynamics.netEntropyEntourage_empty, EReal.range_coe_eq_Ioo, EReal.image_coe_Iic, EReal.mul_top_of_neg, EReal.bot_sub, EReal.bot_mul_bot, EReal.eq_bot_iff_forall_lt, EReal.range_coe, EReal.continuousAt_add_bot_coe, EReal.continuousOn_toReal, ExpGrowth.expGrowthSup_zero, EReal.preimage_coe_Ioi_bot, EReal.bot_lt_zero, EReal.sign_bot, EReal.bot_lt_inv, EReal.bot_lt_coe_ennreal, EReal.toReal_image_Ioo_bot_zero, EReal.neg_eq_bot_iff, EReal.zero_lt_exp_iff, EReal.tendsto_exp_nhds_bot_nhds_zero, EReal.preimage_coe_Ioo_bot, EReal.bot_mul_top, EReal.tendsto_coe_nhds_bot_iff, EReal.tendsto_coe_atBot, EReal.exists, EReal.toReal_bot, EReal.top_mul_bot, EReal.sub_bot, EReal.bot_mul_of_pos, EReal.preimage_coe_Ioo_bot_top, EReal.toENNReal_bot, EReal.bot_div_of_pos_ne_top, EReal.mul_bot_of_pos, EReal.mul_eq_bot, EReal.top_mul_of_neg, EReal.nhds_bot', EReal.inv_bot, ENNReal.log_zero, EReal.nhds_bot, Dynamics.netEntropyInfEntourage_empty, Dynamics.coverEntropyInf_empty, EReal.coe_mul_bot_of_neg, ENNReal.bot_lt_log_iff, EReal.toReal_eq_zero_iff, EReal.preimage_coe_Ioc_bot, EReal.coe_sub_bot, EReal.coe_mul_bot_of_pos, EReal.exp_eq_zero_iff, EReal.abs_bot, EReal.mul_bot_of_neg, EReal.bot_mul_of_neg, ExpGrowth.expGrowthInf_zero, Dynamics.coverEntropyEntourage_empty, Dynamics.coverEntropy_empty, Dynamics.coverEntropyInfEntourage_empty, MeasureTheory.exists_upperSemicontinuous_lt_integral_gt, EReal.add_eq_bot_iff, EReal.mul_eq_top, EReal.neg_top, EReal.nhdsWithin_bot, EReal.coe_mul_top_of_neg, EReal.div_bot, EReal.neg_bot, EReal.tendsto_nhds_bot_iff_real, ENNReal.log_ofReal, EReal.top_mul_coe_of_neg
instCompleteLinearOrderEReal πŸ“–CompOp
81 mathmath: LinearGrowth.linearGrowthSup_zero, LinearGrowth.linearGrowthSup_top, LinearGrowth.linearGrowthInf_add_le', LinearGrowth.le_linearGrowthSup_add, LinearGrowth.linearGrowthSup_add_le, LinearGrowth.le_linearGrowthSup_add', ExpGrowth.expGrowthSup_add, LinearGrowth.linearGrowthInf_bot, LinearGrowth.linearGrowthSup_bot, LinearGrowth.linearGrowthInf_biInf, ExpGrowth.expGrowthSup_def, Eventually.le_linearGrowthInf, Dynamics.coverEntropyEntourage_union, LinearGrowth.linearGrowthInf_top, EReal.limsup_neg, LinearGrowth.linearGrowthInf_const_mul_self, Dynamics.coverEntropy_union, LinearGrowth.linearGrowthInf_zero, Eventually.linearGrowthSup_le, LinearGrowth.linearGrowthSup_le_of_eventually_le, EReal.min_neg_neg, LinearGrowth.linearGrowthSup_biSup, EReal.le_liminf_add, LinearGrowth.linearGrowthSup_inv, LinearGrowth.linearGrowthInf_const, EReal.liminf_add_le, LinearGrowth.linearGrowthSup_le_iff, ExpGrowth.le_expGrowthInf_comp, LinearGrowth.linearGrowthSup_const_mul_self, LinearGrowth.linearGrowthSup_sup, LinearGrowth.linearGrowthInf_inf, EReal.coe_toENNReal_eq_max, LinearGrowth.linearGrowthSup_eventually_monotone, LinearGrowth.linearGrowthSup_const, LSeries.abscissaOfAbsConv_binop_le, LSeries.abscissaOfAbsConv_add_le, LinearGrowth.linearGrowthInf_natCast_nonneg, ExpGrowth.expGrowthInf_inf, EReal.le_limsup_mul, EReal.limsup_mul_le, LinearGrowth.linearGrowthSup_comp_nonneg, EReal.le_liminf_mul, ExpGrowth.le_expGrowthInf_add, LSeries.abscissaOfAbsConv_convolution_le, Monotone.linearGrowthInf_nonneg, ExpGrowth.expGrowthSup_comp_le, EReal.liminf_neg, LinearGrowth.linearGrowthInf_eventually_monotone, EReal.liminf_mul_le, EReal.max_neg_neg, Monotone.expGrowthInf_comp_le, LinearGrowth.linearGrowthInf_iInf, LinearGrowth.linearGrowthInf_monotone, LinearGrowth.linearGrowthSup_iSup, LinearGrowth.linearGrowthInf_comp_nonneg, LinearGrowth.le_linearGrowthInf_iff, ExpGrowth.expGrowthInf_def, LinearGrowth.linearGrowthInf_le_of_eventually_le, LinearGrowth.linearGrowthInf_le_iff, EReal.le_limsup_add, LinearGrowth.linearGrowthSup_comp_le, Monotone.linearGrowthInf_comp_le, Monotone.linearGrowthInf_comp_mul, LSeries.abscissaOfAbsConv_sub_le, LinearGrowth.linearGrowthInf_add_le, Frequently.linearGrowthInf_le, Monotone.linearGrowthInf_comp, Monotone.linearGrowthSup_nonneg, Monotone.linearGrowthSup_comp_mul, Monotone.le_linearGrowthSup_comp, ExpGrowth.expGrowthSup_sup, Monotone.linearGrowthSup_comp, LinearGrowth.linearGrowthSup_monotone, LinearGrowth.linearGrowthInf_le_linearGrowthSup_of_frequently_le, LinearGrowth.le_linearGrowthInf_comp, LinearGrowth.le_linearGrowthSup_iff, LinearGrowth.le_linearGrowthInf_add, EReal.limsup_add_le, Frequently.le_linearGrowthSup, LinearGrowth.linearGrowthInf_neg, Monotone.le_expGrowthSup_comp
instInfSetEReal πŸ“–CompOp
5 mathmath: LinearGrowth.linearGrowthInf_biInf, EReal.add_iInf_le_iInf_add, ExpGrowth.expGrowthInf_iInf, LinearGrowth.linearGrowthInf_iInf, ExpGrowth.expGrowthInf_biInf
instLinearOrderEReal πŸ“–CompOpβ€”
instNontrivialEReal πŸ“–CompOpβ€”
instOneEReal πŸ“–CompOp
22 mathmath: LSeries.abscissaOfAbsConv_one, ArithmeticFunction.abscissaOfAbsConv_zeta, LSeries.abscissaOfAbsConv_le_of_le_const, EReal.abs_mul_sign, ArithmeticFunction.vonMangoldt.abscissaOfAbsConv_residueClass_le_one, EReal.one_mul, LSeries.abscissaOfAbsConv_le_one_of_isBigO_one, EReal.coe_coe_sign, DirichletCharacter.absicssaOfAbsConv_eq_one, EReal.div_self, EReal.coe_ennreal_eq_one, LSeries.abscissaOfAbsConv_le_of_le_const_mul_rpow, EReal.toReal_one, EReal.coe_one, EReal.sign_mul_inv_abs, EReal.coe_eq_one, EReal.sign_mul_abs, EReal.coe_ennreal_one, instZeroLEOneClassEReal, EReal.sign_mul_inv_abs', LSeries.abscissaOfAbsConv_le_of_isBigO_rpow, ArithmeticFunction.abscissaOfAbsConv_moebius
instPartialOrderEReal πŸ“–CompOp
274 mathmath: EReal.nhds_top_basis, Dynamics.netEntropyEntourage_monotone, Dynamics.coverEntropyInfEntourage_le_netEntropyInfEntourage, Dynamics.coverEntropyEntourage_le_coverEntropyInfEntourage, EReal.one_lt_exp_iff, EReal.inv_strictAntiOn, Complex.isOpen_re_lt_EReal, EReal.coe_le_coe_iff, Dynamics.coverEntropyInfEntourage_antitone, EReal.image_coe_Icc, ENNReal.log_lt_log_iff, Monotone.expGrowthSup_nonneg, EReal.coe_ennreal_le_coe_ennreal_iff, EReal.sub_nonneg, EReal.neg_nonneg, LinearGrowth.linearGrowthInf_add_le', LinearGrowth.le_linearGrowthSup_add, EReal.mul_nonpos_iff, EReal.toENNReal_eq_zero_iff, ENNReal.log_le_log_iff, LinearGrowth.linearGrowthSup_add_le, EReal.image_coe_Ioc, EReal.exp_strictMono, ExpGrowth.expGrowthInf_of_eventually_ge, ENNReal.log_lt_zero_iff, LSeries_injOn, EReal.neg_strictAnti, Dynamics.coverEntropy_iUnion_le, EReal.addLECancellable_coe, ExpGrowth.expGrowthInf_le_iff, EReal.image_coe_Ico, LSeriesSummable.abscissaOfAbsConv_le, EReal.neg_lt_comm, EReal.toENNReal_pos_iff, EReal.sign_eq_and_abs_eq_iff_eq, LinearGrowth.le_linearGrowthSup_add', EReal.preimage_coe_Ioi, Dynamics.netEntropyEntourage_le_coverEntropyEntourage, EReal.instPosMulMono, EReal.expOrderIso_symm, EReal.image_coe_Iio, EReal.le_coe_toReal, ExpGrowth.expGrowthInf_eventually_monotone, EReal.iSup_add_le_add_iSup, EReal.coe_nonpos, EReal.add_lt_top, EReal.neg_le_neg_iff, EReal.preimage_coe_Ioo, Dynamics.coverEntropy_monotone, ENNReal.log_strictMono, ExpGrowth.expGrowthInf_mul_le, EReal.nhds_bot_basis, LSeries_deriv_eqOn, LSeries.abscissaOfAbsConv_le_of_le_const, EReal.one_le_exp_iff, LSeries_analyticOnNhd, Dynamics.netEntropyEntourage_antitone, EReal.exists_nat_ge_mul, EReal.nhds_top', EReal.bot_lt_coe, EReal.abs_mul_sign, ArithmeticFunction.vonMangoldt.abscissaOfAbsConv_residueClass_le_one, EReal.preimage_coe_Ioo_top, EReal.bot_lt_add_iff, EReal.instMulPosMono, Dynamics.coverEntropyEntourage_le_netEntropyEntourage, ExpGrowth.expGrowthInf_comp_nonneg, EReal.mem_nhds_bot_iff, EReal.range_coe_ennreal, EReal.range_coe_eq_Ioo, ExpGrowth.expGrowthInf_le_expGrowthSup_of_frequently_le, EReal.image_coe_Iic, Dynamics.coverEntropyInfEntourage_le_coverEntropyInf, Dynamics.netEntropyInfEntourage_nonneg, EReal.instCanLiftENNRealToERealLeOfNat, ENNReal.log_le_log, Dynamics.netEntropyInfEntourage_le_netEntropyEntourage, LSeries.abscissaOfAbsConv_le_one_of_isBigO_one, Dynamics.coverEntropyInfEntourage_le_coverEntropyEntourage, ExpGrowth.expGrowthInf_monotone, Dynamics.coverEntropyEntourage_image_le, LSeries.abscissaOfAbsConv_le_of_forall_lt_LSeriesSummable, EReal.preimage_coe_Icc, EReal.sign_mul, ENNReal.zero_lt_log_iff, Dynamics.coverEntropyInf_image_le_of_uniformContinuous, EReal.exp_lt_exp_iff, EReal.sign_coe, EReal.le_liminf_add, ENNReal.logOrderIso_symm, EReal.exp_monotone, EReal.coe_le_coe, EReal.mul_ne_top, ENNReal.log_monotone, EReal.liminf_add_le, LinearGrowth.linearGrowthSup_le_iff, ExpGrowth.le_expGrowthInf_comp, EReal.ge_of_forall_gt_iff_ge, Dynamics.le_coverEntropyEntourage_image, EReal.eq_bot_iff_forall_lt, Dynamics.coverEntropyEntourage_monotone, EReal.mul_ne_bot, EReal.mul_nonneg_iff, Dynamics.coverEntropy_antitone, EReal.sub_lt_iff, ExpGrowth.expGrowthInf_le_of_eventually_le, EReal.preimage_coe_Ici, EReal.image_coe_Ioo, EReal.natCast_lt_iff, Dynamics.coverEntropyInf_monotone, EReal.mul_neg_iff, Frequently.expGrowthInf_le, ExpGrowth.expGrowthSup_of_eventually_ge, EReal.preimage_coe_Ioi_bot, EReal.neg_lt_zero, EReal.bot_lt_zero, EReal.preimage_coe_Ioc, Dynamics.netEntropyInfEntourage_monotone, EReal.image_coe_Ici, EReal.coe_neg', Dynamics.coverEntropyInf_nonneg, Dynamics.IsDynCoverOf.coverEntropyEntourage_le_log_card_div, Dynamics.coverEntropyEntourage_finite_of_isCompact_invariant, LSeries.abscissaOfAbsConv_binop_le, EReal.sign_bot, EReal.bot_lt_inv, LSeries.abscissaOfAbsConv_add_le, ExpGrowth.expGrowthSup_mul_le, LinearGrowth.linearGrowthInf_natCast_nonneg, Dynamics.coverEntropy_image_le_of_uniformContinuousOn_invariant, LSeries.abscissaOfAbsConv_le_of_forall_lt_LSeriesSummable', EReal.exp_le_one_iff, EReal.sub_nonpos, EReal.le_neg, EReal.bot_lt_coe_ennreal, Dynamics.coverEntropyInf_antitone, Dynamics.coverEntropyEntourage_le_log_coverMincard_div, EReal.add_iInf_le_iInf_add, EReal.neg_le_zero, EReal.coe_nonneg, ExpGrowth.le_expGrowthInf_add, EReal.toReal_image_Ioo_bot_zero, LSeries.abscissaOfAbsConv_convolution_le, EReal.zero_lt_exp_iff, EReal.preimage_coe_Ioo_bot, ENNReal.log_lt_top_iff, ExpGrowth.le_expGrowthInf_iff, ExpGrowth.expGrowthSup_comp_le, MeasureTheory.exists_lt_lowerSemicontinuous_integral_lt, EReal.sub_self_le_zero, Frequently.le_expGrowthSup, EReal.coe_strictMono, EReal.coe_ennreal_lt_coe_ennreal_iff, Dynamics.coverEntropy_image_le_of_uniformContinuous, ExpGrowth.expGrowthSup_comp_nonneg, ENNReal.log_le_zero_iff, EReal.preimage_coe_Ico_top, LSeries.abscissaOfAbsConv_le_of_le_const_mul_rpow, EReal.sub_neg, Dynamics.netEntropyInfEntourage_le_coverEntropyInfEntourage, Complex.isOpen_im_gt_EReal, ExpGrowth.expGrowthSup_eventually_monotone, LSeries_differentiableOn, Monotone.expGrowthInf_comp_le, Dynamics.coverEntropy_nonneg, Dynamics.coverEntropyEntourage_antitone, EReal.sign_top, EReal.preimage_coe_Iio, EReal.preimage_coe_Ioo_bot_top, EReal.lt_sub_iff_add_lt, Monotone.expGrowthInf_nonneg, ENNReal.zero_le_log_iff, EReal.instMulPosReflectLT, EReal.neg_pos, EReal.coe_pos, EReal.le_iff_sign, EReal.mul_eq_bot, EReal.le_of_forall_lt_iff_le, Eventually.le_expGrowthInf, EReal.preimage_coe_Iio_top, Dynamics.coverEntropy_biUnion_le, EReal.nhds_bot', Complex.isOpen_im_lt_EReal, Dynamics.coverEntropyEntourage_nonneg, Dynamics.netEntropyInfEntourage_le_coverEntropyInf, LinearGrowth.le_linearGrowthInf_iff, EReal.tendsto_nhds_top_iff_real, EReal.nhds_bot, ExpGrowth.le_expGrowthSup_mul', Dynamics.coverEntropyInfEntourage_image_le, LSeries_analyticOn, EReal.lt_neg_comm, EReal.exp_lt_one_iff, EReal.lowerSemicontinuous_add, EReal.toReal_image_Ioo_zero_top, EReal.inv_lt_top, Dynamics.coverEntropyInfEntourage_closure, ExpGrowth.expGrowthInf_mul_le', LinearGrowth.linearGrowthInf_le_iff, EReal.le_limsup_add, Dynamics.coverEntropyEntourage_closure, Dynamics.coverEntropyInf_iUnion_le, EReal.preimage_coe_Iic, EReal.toENNReal_ne_zero_iff, LSeries.abscissaOfAbsConv_sub_le, EReal.coe_lt_coe, EReal.exp_lt_top_iff, EReal.expOrderIso_apply, ENNReal.bot_lt_log_iff, EReal.sign_mul_inv_abs, Dynamics.netEntropyEntourage_nonneg, EReal.coe_ennreal_strictMono, EReal.lt_iff_exists_rat_btwn, EReal.preimage_coe_Ioc_bot, LinearGrowth.linearGrowthInf_add_le, Dynamics.coverEntropyInf_biUnion_le, ExpGrowth.expGrowthSup_le_iff, EReal.sign_mul_abs, EReal.sub_pos, Dynamics.coverEntropyEntourage_le_coverEntropy, EReal.sub_le_iff_le_add, EReal.natCast_div_le, EReal.preimage_coe_Ico, EReal.nhds_top, instIsOrderedAddMonoidEReal, Dynamics.netEntropyEntourage_le_coverEntropy, Dynamics.coverEntropyInf_image_le_of_uniformContinuousOn_invariant, EReal.mul_pos_iff, EReal.sign_neg, Dynamics.le_coverEntropyInfEntourage_image, EReal.zero_lt_top, Eventually.expGrowthSup_le, ExpGrowth.expGrowthSup_le_of_eventually_le, Dynamics.netEntropyInfEntourage_antitone, EReal.neg_le, ENNReal.log_lt_log, EReal.coe_ennreal_nonneg, EReal.coe_nnreal_lt_top, EReal.coe_ennreal_pos_iff_ne_zero, instZeroLEOneClassEReal, Dynamics.coverEntropyInfEntourage_nonneg, ExpGrowth.le_expGrowthSup_mul, MeasureTheory.exists_upperSemicontinuous_lt_integral_gt, EReal.image_coe_Ioi, EReal.le_sub_iff_add_le, instDenselyOrderedEReal, EReal.mul_eq_top, ExpGrowth.le_expGrowthInf_mul, LinearGrowth.le_linearGrowthSup_iff, ExpGrowth.le_expGrowthSup_iff, ExpGrowth.expGrowthInf_le_expGrowthSup, EReal.exp_le_exp_iff, EReal.natCast_le_iff, EReal.eq_top_iff_forall_lt, Complex.isOpen_re_gt_EReal, EReal.sign_mul_inv_abs', ENNReal.logOrderIso_apply, ExpGrowth.expGrowthSup_monotone, Dynamics.coverEntropyInfEntourage_monotone, LinearGrowth.le_linearGrowthInf_add, EReal.coe_toReal_le, EReal.coe_lt_coe_iff, EReal.mem_nhds_top_iff, Dynamics.coverEntropyInf_le_coverEntropy, EReal.limsup_add_le, EReal.coe_lt_top, EReal.instOrderTopology, EReal.neg_lt_neg_iff, EReal.coe_ennreal_pos, LSeries.abscissaOfAbsConv_le_of_isBigO_rpow, EReal.tendsto_nhds_bot_iff_real, EReal.instPosMulReflectLT, EReal.lt_iff_exists_real_btwn, Monotone.le_expGrowthSup_comp
instSupSetEReal πŸ“–CompOp
18 mathmath: Dynamics.coverEntropy_iUnion_le, EReal.iSup_add_le_add_iSup, ExpGrowth.expGrowthSup_sum, ExpGrowth.expGrowthSup_biSup, Dynamics.coverEntropyInf_eq_iSup_netEntropyInfEntourage, LinearGrowth.linearGrowthSup_biSup, Dynamics.coverEntropy_biUnion_finset, Dynamics.coverEntropy_iUnion_of_finite, Dynamics.coverEntropyInf_eq_iSup_basis_netEntropyInfEntourage, LinearGrowth.linearGrowthSup_iSup, Dynamics.coverEntropy_eq_iSup_basis, Dynamics.coverEntropy_eq_iSup_basis_netEntropyEntourage, Dynamics.coverEntropy_biUnion_le, Dynamics.coverEntropy_eq_iSup_netEntropyEntourage, Dynamics.coverEntropyInf_iUnion_le, Dynamics.coverEntropyInf_biUnion_le, ExpGrowth.expGrowthSup_iSup, Dynamics.coverEntropyInf_eq_iSup_basis
instZeroEReal πŸ“–CompOp
110 mathmath: LinearGrowth.linearGrowthSup_zero, EReal.one_lt_exp_iff, EReal.inv_strictAntiOn, Monotone.expGrowthSup_nonneg, EReal.sub_nonneg, EReal.neg_nonneg, EReal.mul_nonpos_iff, EReal.toENNReal_eq_zero_iff, ENNReal.log_lt_zero_iff, EReal.toENNReal_pos_iff, EReal.sign_eq_and_abs_eq_iff_eq, Dynamics.netEntropyInfEntourage_univ, Dynamics.coverEntropyInfEntourage_univ, EReal.abs_eq_zero_iff, EReal.instPosMulMono, Dynamics.coverEntropyEntourage_univ, EReal.sub_self, EReal.coe_nonpos, EReal.tendsto_exp_nhds_zero_nhds_one, EReal.one_le_exp_iff, EReal.abs_mul_sign, EReal.toReal_zero, EReal.instMulPosMono, ExpGrowth.expGrowthInf_comp_nonneg, EReal.range_coe_ennreal, LinearGrowth.linearGrowthInf_zero, EReal.neg_eq_zero_iff, Dynamics.netEntropyInfEntourage_nonneg, EReal.instCanLiftENNRealToERealLeOfNat, EReal.coe_ennreal_zero, EReal.sign_mul, ENNReal.zero_lt_log_iff, ENNReal.log_eq_one_iff, EReal.sign_coe, ExpGrowth.expGrowthSup_const, LinearGrowth.linearGrowthInf_const, EReal.mul_ne_top, EReal.coe_zero, EReal.tendsto_const_div_atTop_nhds_zero_nat, EReal.mul_ne_bot, EReal.mul_nonneg_iff, EReal.mul_neg_iff, EReal.coe_coe_sign, EReal.neg_lt_zero, EReal.coe_toENNReal_eq_max, EReal.bot_lt_zero, EReal.div_zero, EReal.coe_neg', Dynamics.coverEntropyInf_nonneg, LinearGrowth.linearGrowthSup_const, EReal.coe_ennreal_eq_zero, EReal.sign_bot, LinearGrowth.linearGrowthInf_natCast_nonneg, LinearGrowth.linearGrowthSup_comp_nonneg, EReal.exp_le_one_iff, EReal.sub_nonpos, EReal.neg_le_zero, EReal.coe_nonneg, EReal.toReal_image_Ioo_bot_zero, Monotone.linearGrowthInf_nonneg, EReal.abs_zero, EReal.sub_self_le_zero, ExpGrowth.expGrowthSup_comp_nonneg, ENNReal.log_le_zero_iff, EReal.sub_neg, EReal.inv_top, Dynamics.coverEntropy_nonneg, EReal.instNoZeroDivisors, EReal.sign_top, EReal.toENNReal_zero, Monotone.expGrowthInf_nonneg, EReal.exp_zero, LinearGrowth.linearGrowthInf_comp_nonneg, ENNReal.zero_le_log_iff, EReal.instMulPosReflectLT, EReal.div_top, EReal.neg_pos, EReal.coe_pos, EReal.le_iff_sign, EReal.mul_eq_bot, ENNReal.log_one, EReal.coe_eq_zero, EReal.inv_bot, Dynamics.coverEntropyEntourage_nonneg, EReal.exp_lt_one_iff, EReal.toReal_image_Ioo_zero_top, EReal.toENNReal_ne_zero_iff, ExpGrowth.expGrowthInf_const, EReal.zero_div, EReal.toReal_eq_zero_iff, EReal.sign_mul_inv_abs, Dynamics.netEntropyEntourage_nonneg, EReal.sign_mul_abs, EReal.sub_pos, EReal.mul_pos_iff, Monotone.linearGrowthSup_nonneg, EReal.sign_neg, EReal.zero_lt_top, EReal.zero_mul, EReal.coe_ennreal_nonneg, EReal.coe_ennreal_pos_iff_ne_zero, instZeroLEOneClassEReal, Dynamics.coverEntropyInfEntourage_nonneg, EReal.mul_eq_top, EReal.sign_mul_inv_abs', EReal.div_bot, EReal.inv_zero, Dynamics.netEntropyEntourage_univ, EReal.coe_ennreal_pos, EReal.instPosMulReflectLT

Theorems

NameKindAssumesProvesValidatesDepends On
instCharZeroEReal πŸ“–mathematicalβ€”CharZero
EReal
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneEReal
β€”WithBot.charZero
WithTop.charZero
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
instDenselyOrderedEReal πŸ“–mathematicalβ€”DenselyOrdered
EReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
β€”WithBot.denselyOrdered
WithTop.denselyOrdered
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
WithTop.noMinOrder
instNoMinOrderOfNontrivial
instIsOrderedAddMonoidEReal πŸ“–mathematicalβ€”IsOrderedAddMonoid
EReal
instAddCommMonoidEReal
instPartialOrderEReal
β€”WithBot.isOrderedAddMonoid
WithTop.isOrderedAddMonoid
Real.instIsOrderedAddMonoid
instZeroLEOneClassEReal πŸ“–mathematicalβ€”ZeroLEOneClass
EReal
instZeroEReal
instOneEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
β€”WithBot.zeroLEOneClass
WithTop.zeroLEOneClass
Real.instZeroLEOneClass

---

← Back to Index