Documentation Verification Report

Inv

πŸ“ Source: Mathlib/Data/EReal/Inv.lean

Statistics

MetricCount
Definitionsabs, instCommMonoidWithZero, instDivInvMonoid, instDivInvOneMonoid, instInv, inv, evalERealDiv, evalERealInv
8
Theoremsabs_bot, abs_coe_lt_top, abs_def, abs_eq_zero_iff, abs_mul, abs_mul_sign, abs_neg, abs_top, abs_zero, add_div_of_nonneg_right, antitone_div_right_of_nonpos, bot_div_of_neg_ne_bot, bot_div_of_pos_ne_top, bot_lt_inv, coe_abs, coe_coe_sign, coe_div, coe_ennreal_pow, coe_inv, coe_pow, div_bot, div_div, div_eq_iff, div_eq_inv_mul, div_le_div_right_of_nonneg, div_le_div_right_of_nonpos, div_le_iff_le_mul, div_lt_div_right_of_neg, div_lt_div_right_of_pos, div_lt_iff, div_mul_cancel, div_mul_div_comm, div_nonneg, div_nonneg_of_nonpos_of_nonpos, div_nonpos_of_nonneg_of_nonpos, div_nonpos_of_nonpos_of_nonneg, div_pos, div_right_distrib_of_nonneg, div_self, div_top, div_zero, exists_nat_ge_mul, instMulPosMono, instMulPosReflectLT, instPosMulMono, instPosMulReflectLT, inv_bot, inv_inv, inv_lt_top, inv_neg, inv_neg_of_neg_ne_bot, inv_nonneg_of_nonneg, inv_nonpos_of_nonpos, inv_pos_of_pos_ne_top, inv_strictAntiOn, inv_top, inv_zero, le_div_iff_mul_le, le_iff_sign, le_mul_of_forall_lt, lt_div_iff, max_neg_neg, min_neg_neg, monotone_div_right_of_nonneg, mul_div, mul_div_cancel, mul_div_left_comm, mul_div_mul_cancel, mul_div_right, mul_inv, mul_le_mul_of_nonpos_right, mul_le_of_forall_lt_of_nonneg, natCast_div_le, sign_bot, sign_coe, sign_eq_and_abs_eq_iff_eq, sign_mul, sign_mul_abs, sign_mul_inv_abs, sign_mul_inv_abs', sign_neg, sign_top, strictAnti_div_right_of_neg, strictMono_div_right_of_pos, top_div_of_neg_ne_bot, top_div_of_pos_ne_top, zero_div
87
Total95

EReal

Definitions

NameCategoryTheorems
abs πŸ“–CompOp
15 mathmath: abs_neg, sign_eq_and_abs_eq_iff_eq, abs_eq_zero_iff, abs_mul_sign, abs_top, abs_coe_lt_top, abs_mul, abs_zero, le_iff_sign, abs_def, sign_mul_inv_abs, sign_mul_abs, coe_abs, abs_bot, sign_mul_inv_abs'
instCommMonoidWithZero πŸ“–CompOp
2 mathmath: coe_ennreal_pow, coe_pow
instDivInvMonoid πŸ“–CompOp
99 mathmath: LinearGrowth.linearGrowthSup_zero, LinearGrowth.linearGrowthSup_top, div_eq_inv_mul, LinearGrowth.linearGrowthInf_add_le', LinearGrowth.le_linearGrowthSup_add, LinearGrowth.linearGrowthSup_add_le, div_le_div_right_of_nonneg, top_div_of_neg_ne_bot, div_mul_div_comm, LinearGrowth.le_linearGrowthSup_add', LinearGrowth.linearGrowthInf_bot, strictMono_div_right_of_pos, LinearGrowth.linearGrowthSup_bot, LinearGrowth.linearGrowthInf_biInf, ExpGrowth.expGrowthSup_def, Eventually.le_linearGrowthInf, bot_div_of_neg_ne_bot, LinearGrowth.linearGrowthInf_top, mul_div_mul_cancel, LinearGrowth.linearGrowthInf_const_mul_self, strictAnti_div_right_of_neg, LinearGrowth.linearGrowthInf_zero, Eventually.linearGrowthSup_le, lt_div_iff, LinearGrowth.linearGrowthSup_le_of_eventually_le, LinearGrowth.linearGrowthSup_biSup, LinearGrowth.linearGrowthSup_inv, LinearGrowth.linearGrowthInf_const, mul_div, LinearGrowth.linearGrowthSup_le_iff, ExpGrowth.le_expGrowthInf_comp, monotone_div_right_of_nonneg, LinearGrowth.linearGrowthSup_const_mul_self, tendsto_const_div_atTop_nhds_zero_nat, LinearGrowth.linearGrowthSup_sup, LinearGrowth.linearGrowthInf_inf, div_le_div_right_of_nonpos, div_zero, Dynamics.IsDynCoverOf.coverEntropyEntourage_le_log_card_div, LinearGrowth.linearGrowthSup_eventually_monotone, LinearGrowth.linearGrowthSup_const, LinearGrowth.linearGrowthInf_natCast_nonneg, LinearGrowth.linearGrowthSup_comp_nonneg, Dynamics.coverEntropyEntourage_le_log_coverMincard_div, Monotone.linearGrowthInf_nonneg, ExpGrowth.expGrowthSup_comp_le, div_self, LinearGrowth.linearGrowthInf_eventually_monotone, Monotone.expGrowthInf_comp_le, top_div_of_pos_ne_top, div_lt_div_right_of_pos, div_lt_iff, LinearGrowth.linearGrowthInf_iInf, LinearGrowth.linearGrowthInf_monotone, div_pos, LinearGrowth.linearGrowthSup_iSup, LinearGrowth.linearGrowthInf_comp_nonneg, div_top, mul_div_cancel, bot_div_of_pos_ne_top, LinearGrowth.le_linearGrowthInf_iff, div_nonpos_of_nonpos_of_nonneg, ExpGrowth.expGrowthInf_def, add_div_of_nonneg_right, LinearGrowth.linearGrowthInf_le_of_eventually_le, LinearGrowth.linearGrowthInf_le_iff, LinearGrowth.linearGrowthSup_comp_le, Monotone.linearGrowthInf_comp_le, mul_div_left_comm, Monotone.linearGrowthInf_comp_mul, zero_div, div_nonneg, LinearGrowth.linearGrowthInf_add_le, Frequently.linearGrowthInf_le, div_mul_cancel, natCast_div_le, mul_div_right, coe_div, Monotone.linearGrowthSup_nonneg, div_right_distrib_of_nonneg, Monotone.linearGrowthSup_comp_mul, Monotone.le_linearGrowthSup_comp, div_le_iff_le_mul, div_eq_iff, div_lt_div_right_of_neg, div_nonneg_of_nonpos_of_nonpos, div_nonpos_of_nonneg_of_nonpos, LinearGrowth.linearGrowthSup_monotone, LinearGrowth.linearGrowthInf_le_linearGrowthSup_of_frequently_le, LinearGrowth.le_linearGrowthInf_comp, LinearGrowth.le_linearGrowthSup_iff, le_div_iff_mul_le, div_div, antitone_div_right_of_nonpos, div_bot, LinearGrowth.le_linearGrowthInf_add, Frequently.le_linearGrowthSup, LinearGrowth.linearGrowthInf_neg, Monotone.le_expGrowthSup_comp
instDivInvOneMonoid πŸ“–CompOpβ€”
instInv πŸ“–CompOp
17 mathmath: inv_strictAntiOn, div_eq_inv_mul, inv_nonneg_of_nonneg, inv_inv, inv_nonpos_of_nonpos, inv_neg, bot_lt_inv, inv_top, inv_bot, inv_lt_top, inv_neg_of_neg_ne_bot, sign_mul_inv_abs, coe_inv, mul_inv, inv_pos_of_pos_ne_top, sign_mul_inv_abs', inv_zero
inv πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
abs_bot πŸ“–mathematicalβ€”abs
Bot.bot
EReal
instBotEReal
Top.top
ENNReal
instTopENNReal
β€”β€”
abs_coe_lt_top πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
abs
Real.toEReal
Top.top
instTopENNReal
β€”ENNReal.ofReal_lt_top
abs_def πŸ“–mathematicalβ€”abs
Real.toEReal
ENNReal.ofReal
abs
Real
Real.lattice
Real.instAddGroup
β€”β€”
abs_eq_zero_iff πŸ“–mathematicalβ€”abs
ENNReal
instZeroENNReal
EReal
instZeroEReal
β€”IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
abs_mul πŸ“–mathematicalβ€”abs
EReal
instMul
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
β€”inductionβ‚‚_symm_neg
mul_comm
mul_comm
neg_mul
abs_neg
top_mul_coe_of_pos
abs_top
ENNReal.top_mul
abs_eq_zero_iff
coe_eq_zero
LT.lt.ne'
MulZeroClass.mul_zero
abs_zero
abs_mul
Real.instIsOrderedRing
ENNReal.ofReal_mul
abs_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
abs_mul_sign πŸ“–mathematicalβ€”EReal
instMul
ENNReal.toEReal
abs
SignType.cast
instZeroEReal
instOneEReal
instNeg
DFunLike.coe
OrderHom
SignType
PartialOrder.toPreorder
instPartialOrderEReal
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SignType.instLinearOrder
OrderHom.instFunLike
SignType.sign
decidableLT
β€”mul_comm
sign_mul_abs
abs_neg πŸ“–mathematicalβ€”abs
EReal
instNeg
β€”abs_def
coe_neg
abs_neg
abs_top πŸ“–mathematicalβ€”abs
Top.top
EReal
instTop
ENNReal
instTopENNReal
β€”β€”
abs_zero πŸ“–mathematicalβ€”abs
EReal
instZeroEReal
ENNReal
instZeroENNReal
β€”abs_eq_zero_iff
add_div_of_nonneg_right πŸ“–mathematicalEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
DivInvMonoid.toDiv
instDivInvMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
instAddCommMonoidEReal
β€”right_distrib_of_nonneg_of_ne_top
inv_nonneg_of_nonneg
LT.lt.ne
inv_lt_top
antitone_div_right_of_nonpos πŸ“–mathematicalEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
Antitone
DivInvMonoid.toDiv
instDivInvMonoid
β€”neg_neg
neg_le_neg_iff
mul_comm
neg_mul
inv_neg
le_neg_of_le_neg
neg_zero
div_le_div_right_of_nonneg
bot_div_of_neg_ne_bot πŸ“–mathematicalEReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
DivInvMonoid.toDiv
instDivInvMonoid
Bot.bot
instBotEReal
Top.top
instTop
β€”bot_mul_of_neg
inv_neg_of_neg_ne_bot
bot_div_of_pos_ne_top πŸ“–mathematicalEReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
DivInvMonoid.toDiv
instDivInvMonoid
Bot.bot
instBotEReal
β€”bot_mul_of_pos
inv_pos_of_pos_ne_top
bot_lt_inv πŸ“–mathematicalβ€”EReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
Bot.bot
instBotEReal
instInv
β€”bot_lt_zero
inv_bot
bot_lt_coe
coe_inv
inv_top
coe_abs πŸ“–mathematicalβ€”ENNReal.toEReal
abs
Real.toEReal
abs
Real
Real.lattice
Real.instAddGroup
β€”abs_def
Real.coe_nnabs
ENNReal.ofReal_coe_nnreal
coe_coe_sign πŸ“–mathematicalβ€”Real.toEReal
SignType.cast
Real
Real.instZero
Real.instOne
Real.instNeg
EReal
instZeroEReal
instOneEReal
instNeg
β€”β€”
coe_div πŸ“–mathematicalβ€”Real.toEReal
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
EReal
instDivInvMonoid
β€”β€”
coe_ennreal_pow πŸ“–mathematicalβ€”ENNReal.toEReal
ENNReal
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
ENNReal.instCommSemiring
EReal
CommMonoidWithZero.toMonoidWithZero
instCommMonoidWithZero
β€”map_pow
MonoidHom.instMonoidHomClass
coe_ennreal_one
coe_ennreal_mul
coe_inv πŸ“–mathematicalβ€”Real.toEReal
Real
Real.instInv
EReal
instInv
β€”β€”
coe_pow πŸ“–mathematicalβ€”Real.toEReal
Real
Monoid.toNatPow
Real.instMonoid
EReal
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
instCommMonoidWithZero
β€”map_pow
MonoidHom.instMonoidHomClass
coe_one
coe_mul
div_bot πŸ“–mathematicalβ€”EReal
DivInvMonoid.toDiv
instDivInvMonoid
Bot.bot
instBotEReal
instZeroEReal
β€”MulZeroClass.mul_zero
inv_bot
div_div πŸ“–mathematicalβ€”EReal
DivInvMonoid.toDiv
instDivInvMonoid
instMul
β€”mul_assoc
mul_inv
div_eq_iff πŸ“–mathematicalβ€”EReal
DivInvMonoid.toDiv
instDivInvMonoid
instMul
β€”mul_div_cancel
mul_comm
mul_div
div_eq_inv_mul πŸ“–mathematicalβ€”EReal
DivInvMonoid.toDiv
instDivInvMonoid
instMul
instInv
β€”mul_comm
div_le_div_right_of_nonneg πŸ“–mathematicalEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
DivInvMonoid.toDiv
instDivInvMonoid
β€”monotone_div_right_of_nonneg
div_le_div_right_of_nonpos πŸ“–mathematicalEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
DivInvMonoid.toDiv
instDivInvMonoid
β€”antitone_div_right_of_nonpos
div_le_iff_le_mul πŸ“–mathematicalEReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
Preorder.toLE
DivInvMonoid.toDiv
instDivInvMonoid
instMul
β€”mul_div_cancel
ne_bot_of_gt
ne_of_gt
mul_div
mul_comm
StrictMono.le_iff_le
strictMono_div_right_of_pos
div_lt_div_right_of_neg πŸ“–mathematicalEReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
DivInvMonoid.toDiv
instDivInvMonoid
β€”strictAnti_div_right_of_neg
div_lt_div_right_of_pos πŸ“–mathematicalEReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
DivInvMonoid.toDiv
instDivInvMonoid
β€”strictMono_div_right_of_pos
div_lt_iff πŸ“–mathematicalEReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
DivInvMonoid.toDiv
instDivInvMonoid
instMul
β€”mul_div_cancel
ne_bot_of_gt
ne_of_gt
mul_div
mul_comm
StrictMono.lt_iff_lt
strictMono_div_right_of_pos
div_mul_cancel πŸ“–mathematicalβ€”EReal
instMul
DivInvMonoid.toDiv
instDivInvMonoid
β€”mul_comm
mul_div_left_comm
div_self
mul_one
div_mul_div_comm πŸ“–mathematicalβ€”EReal
instMul
DivInvMonoid.toDiv
instDivInvMonoid
β€”mul_div
mul_comm
div_div
mul_div_left_comm
div_nonneg πŸ“–mathematicalEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
DivInvMonoid.toDiv
instDivInvMonoid
β€”mul_nonneg
instPosMulMono
inv_nonneg_of_nonneg
div_nonneg_of_nonpos_of_nonpos πŸ“–mathematicalEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
DivInvMonoid.toDiv
instDivInvMonoid
β€”zero_div
div_le_div_right_of_nonpos
div_nonpos_of_nonneg_of_nonpos πŸ“–mathematicalEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
DivInvMonoid.toDiv
instDivInvMonoid
β€”mul_nonpos_of_nonneg_of_nonpos
instPosMulMono
inv_nonpos_of_nonpos
div_nonpos_of_nonpos_of_nonneg πŸ“–mathematicalEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
DivInvMonoid.toDiv
instDivInvMonoid
β€”mul_nonpos_of_nonpos_of_nonneg
instMulPosMono
inv_nonneg_of_nonneg
div_pos πŸ“–mathematicalEReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
DivInvMonoid.toDiv
instDivInvMonoid
β€”mul_pos
inv_pos_of_pos_ne_top
div_right_distrib_of_nonneg πŸ“–mathematicalEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
DivInvMonoid.toDiv
instDivInvMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
instAddCommMonoidEReal
β€”right_distrib_of_nonneg
div_self πŸ“–mathematicalβ€”EReal
DivInvMonoid.toDiv
instDivInvMonoid
instOneEReal
β€”coe_toReal
coe_div
div_self
coe_ne_zero
coe_one
div_top πŸ“–mathematicalβ€”EReal
DivInvMonoid.toDiv
instDivInvMonoid
Top.top
instTop
instZeroEReal
β€”MulZeroClass.mul_zero
inv_top
div_zero πŸ“–mathematicalβ€”EReal
DivInvMonoid.toDiv
instDivInvMonoid
instZeroEReal
β€”inv_zero
MulZeroClass.mul_zero
exists_nat_ge_mul πŸ“–mathematicalβ€”EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
instMul
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneEReal
β€”mul_nonpos_iff
bot_le
Nat.cast_nonneg'
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoidEReal
instZeroLEOneClassEReal
Nat.cast_zero
exists_nat_ge
Real.instIsOrderedRing
Real.instArchimedean
coe_coe_eq_natCast
coe_mul
coe_le_coe_iff
instMulPosMono πŸ“–mathematicalβ€”MulPosMono
EReal
instMul
instZeroEReal
PartialOrder.toPreorder
instPartialOrderEReal
β€”posMulMono_iff_mulPosMono
CommMagma.to_isCommutative
instPosMulMono
instMulPosReflectLT πŸ“–mathematicalβ€”MulPosReflectLT
EReal
instMul
instZeroEReal
PartialOrder.toPreorder
instPartialOrderEReal
β€”MulPosMono.toMulPosReflectLT
instMulPosMono
instPosMulMono πŸ“–mathematicalβ€”PosMulMono
EReal
instMul
instZeroEReal
PartialOrder.toPreorder
instPartialOrderEReal
β€”posMulMono_iff_covariant_pos
sign_mul
sign_pos
one_mul
abs_mul
mul_le_mul_right
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
instPosMulReflectLT πŸ“–mathematicalβ€”PosMulReflectLT
EReal
instMul
instZeroEReal
PartialOrder.toPreorder
instPartialOrderEReal
β€”PosMulMono.toPosMulReflectLT
instPosMulMono
inv_bot πŸ“–mathematicalβ€”EReal
instInv
Bot.bot
instBotEReal
instZeroEReal
β€”β€”
inv_inv πŸ“–mathematicalβ€”EReal
instInv
β€”coe_toReal
coe_inv
inv_inv
inv_lt_top πŸ“–mathematicalβ€”EReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
instInv
Top.top
instTop
β€”zero_lt_top
inv_bot
coe_lt_top
coe_inv
inv_top
inv_neg πŸ“–mathematicalβ€”EReal
instInv
instNeg
β€”neg_bot
inv_top
inv_bot
neg_zero
coe_inv
coe_neg
coe_eq_coe_iff
inv_neg
neg_top
inv_neg_of_neg_ne_bot πŸ“–mathematicalEReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
instInvβ€”CanLift.prf
canLift
ne_top_of_lt
coe_inv
Nat.cast_zero
inv_lt_zero
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
inv_nonneg_of_nonneg πŸ“–mathematicalEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
instInvβ€”coe_inv
coe_nonneg
inv_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
inv_nonpos_of_nonpos πŸ“–mathematicalEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
instInvβ€”coe_inv
coe_nonpos
inv_nonpos
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
inv_pos_of_pos_ne_top πŸ“–mathematicalEReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
instInvβ€”CanLift.prf
canLift
ne_bot_of_gt
coe_inv
Nat.cast_zero
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
inv_strictAntiOn πŸ“–mathematicalβ€”StrictAntiOn
EReal
PartialOrder.toPreorder
instPartialOrderEReal
instInv
Set.Ioi
instZeroEReal
β€”CanLift.prf
canLift
ne_top_of_lt
ne_bot_of_gt
inv_pos_of_pos_ne_top
coe_ne_top
inv_top
not_lt_bot
coe_inv
coe_lt_coe_iff
inv_strictAntiOn
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
coe_pos
inv_top πŸ“–mathematicalβ€”EReal
instInv
Top.top
instTop
instZeroEReal
β€”β€”
inv_zero πŸ“–mathematicalβ€”EReal
instInv
instZeroEReal
β€”GroupWithZero.inv_zero
coe_zero
le_div_iff_mul_le πŸ“–mathematicalEReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
Preorder.toLE
DivInvMonoid.toDiv
instDivInvMonoid
instMul
β€”mul_div_cancel
ne_bot_of_gt
ne_of_gt
mul_div
mul_comm
StrictMono.le_iff_le
strictMono_div_right_of_pos
le_iff_sign πŸ“–mathematicalβ€”EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
SignType
Preorder.toLT
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SignType.instLinearOrder
DFunLike.coe
OrderHom
OrderHom.instFunLike
SignType.sign
instZeroEReal
decidableLT
SignType.neg
ENNReal
ENNReal.instPartialOrder
abs
SignType.zero
SignType.pos
β€”NeZero.one
GroupWithZero.toNontrivial
neg_mul
one_mul
sign_mul_abs
LE.le.lt_or_eq
OrderHom.monotone
LT.lt.le
Monotone.reflect_lt
MulZeroClass.zero_mul
le_mul_of_forall_lt πŸ“–β€”EReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
Preorder.toLE
instMul
β€”β€”le_of_forall_gt_imp_ge_of_dense
instDenselyOrderedEReal
ne_of_gt
LT.lt.trans
Set.mem_Ioo
LT.lt.ne
LE.le.trans
LT.lt.le
lt_div_iff πŸ“–mathematicalEReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
DivInvMonoid.toDiv
instDivInvMonoid
instMul
β€”mul_div_cancel
ne_bot_of_gt
ne_of_gt
mul_div
mul_comm
StrictMono.lt_iff_lt
strictMono_div_right_of_pos
max_neg_neg πŸ“–mathematicalβ€”EReal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderEReal
instNeg
SemilatticeInf.toMin
Lattice.toSemilatticeInf
β€”le_total
sup_of_le_left
inf_of_le_left
sup_of_le_right
inf_of_le_right
min_neg_neg πŸ“–mathematicalβ€”EReal
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderEReal
instNeg
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”le_total
inf_of_le_right
sup_of_le_right
inf_of_le_left
sup_of_le_left
monotone_div_right_of_nonneg πŸ“–mathematicalEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
Monotone
DivInvMonoid.toDiv
instDivInvMonoid
β€”mul_le_mul_of_nonneg_right
instMulPosMono
inv_nonneg_of_nonneg
mul_div πŸ“–mathematicalβ€”EReal
instMul
DivInvMonoid.toDiv
instDivInvMonoid
β€”mul_assoc
mul_div_cancel πŸ“–mathematicalβ€”EReal
instMul
DivInvMonoid.toDiv
instDivInvMonoid
β€”mul_comm
div_mul_cancel
mul_div_left_comm πŸ“–mathematicalβ€”EReal
instMul
DivInvMonoid.toDiv
instDivInvMonoid
β€”mul_div
mul_comm
mul_div_mul_cancel πŸ“–mathematicalβ€”EReal
DivInvMonoid.toDiv
instDivInvMonoid
instMul
β€”mul_div_right
div_div
div_mul_cancel
mul_div_right πŸ“–mathematicalβ€”EReal
instMul
DivInvMonoid.toDiv
instDivInvMonoid
β€”mul_comm
mul_div
mul_inv πŸ“–mathematicalβ€”EReal
instInv
instMul
β€”inductionβ‚‚_symm
mul_comm
MulZeroClass.mul_zero
top_mul_of_pos
coe_pos
inv_top
MulZeroClass.zero_mul
inv_zero
top_mul_of_neg
coe_neg'
inv_bot
mul_bot_of_pos
coe_mul
coe_inv
mul_inv
mul_bot_of_neg
mul_le_mul_of_nonpos_right πŸ“–mathematicalEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
instMulβ€”mul_comm
neg_le_neg_iff
neg_mul
mul_le_mul_of_nonneg_left
instPosMulMono
le_neg
neg_zero
mul_le_of_forall_lt_of_nonneg πŸ“–β€”EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
instMul
β€”β€”le_of_forall_lt_imp_le_of_dense
instDenselyOrderedEReal
lt_or_ge
LE.le.trans
LT.lt.le
natCast_div_le πŸ“–mathematicalβ€”EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneEReal
DivInvMonoid.toDiv
instDivInvMonoid
β€”coe_coe_eq_natCast
coe_div
coe_le_coe_iff
Nat.cast_div_le
Real.instIsStrictOrderedRing
sign_bot πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
EReal
SignType
PartialOrder.toPreorder
instPartialOrderEReal
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SignType.instLinearOrder
OrderHom.instFunLike
SignType.sign
instZeroEReal
decidableLT
Bot.bot
instBotEReal
SignType.instNeg
SignType.instOne
β€”β€”
sign_coe πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
EReal
SignType
PartialOrder.toPreorder
instPartialOrderEReal
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SignType.instLinearOrder
OrderHom.instFunLike
SignType.sign
instZeroEReal
decidableLT
Real.toEReal
Real
Real.instPreorder
Real.instZero
Real.decidableLT
β€”β€”
sign_eq_and_abs_eq_iff_eq πŸ“–mathematicalβ€”abs
DFunLike.coe
OrderHom
EReal
SignType
PartialOrder.toPreorder
instPartialOrderEReal
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SignType.instLinearOrder
OrderHom.instFunLike
SignType.sign
instZeroEReal
decidableLT
β€”sign_mul_abs
sign_mul πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
EReal
SignType
PartialOrder.toPreorder
instPartialOrderEReal
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SignType.instLinearOrder
OrderHom.instFunLike
SignType.sign
instZeroEReal
decidableLT
instMul
SignType.instMul
β€”inductionβ‚‚_symm_neg
mul_comm
mul_comm
neg_mul
sign_neg
top_mul_coe_of_pos
sign_top
one_mul
sign_pos
coe_pos
MulZeroClass.mul_zero
sign_zero
sign_coe
sign_mul
Real.instIsStrictOrderedRing
sign_mul_abs πŸ“–mathematicalβ€”EReal
instMul
SignType.cast
instZeroEReal
instOneEReal
instNeg
DFunLike.coe
OrderHom
SignType
PartialOrder.toPreorder
instPartialOrderEReal
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SignType.instLinearOrder
OrderHom.instFunLike
SignType.sign
decidableLT
ENNReal.toEReal
abs
β€”sign_neg
neg_mul
one_mul
sign_pos
sign_coe
coe_abs
coe_coe_sign
coe_mul
sign_mul_abs
Real.instIsStrictOrderedRing
sign_mul_inv_abs πŸ“–mathematicalβ€”EReal
instMul
SignType.cast
instZeroEReal
instOneEReal
instNeg
DFunLike.coe
OrderHom
SignType
PartialOrder.toPreorder
instPartialOrderEReal
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SignType.instLinearOrder
OrderHom.instFunLike
SignType.sign
decidableLT
instInv
ENNReal.toEReal
abs
β€”sign_neg
MulZeroClass.mul_zero
lt_trichotomy
sign_coe
SignType.coe_neg_one
neg_one_mul
inv_neg
abs_def
coe_ennreal_ofReal
max_eq_left
abs_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
coe_neg
abs_of_neg
neg_neg
coe_zero
sign_zero
SignType.coe_zero
abs_zero
coe_ennreal_zero
inv_zero
sign_pos
SignType.coe_one
one_mul
abs_of_pos
sign_mul_inv_abs' πŸ“–mathematicalβ€”EReal
instMul
SignType.cast
instZeroEReal
instOneEReal
instNeg
DFunLike.coe
OrderHom
SignType
PartialOrder.toPreorder
instPartialOrderEReal
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SignType.instLinearOrder
OrderHom.instFunLike
SignType.sign
decidableLT
ENNReal.toEReal
ENNReal
ENNReal.instInv
abs
instInv
β€”sign_neg
ENNReal.inv_top
MulZeroClass.mul_zero
lt_trichotomy
sign_coe
SignType.coe_neg_one
neg_one_mul
abs_def
ENNReal.ofReal_inv_of_pos
abs_pos_of_neg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
coe_ennreal_ofReal
max_eq_left
inv_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
abs_nonneg
covariant_swap_add_of_covariant_add
coe_neg
coe_inv
abs_of_neg
inv_neg
neg_neg
sign_zero
abs_zero
ENNReal.inv_zero
MulZeroClass.zero_mul
inv_zero
sign_pos
SignType.coe_one
one_mul
abs_pos_of_pos
abs_of_pos
sign_neg πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
EReal
SignType
PartialOrder.toPreorder
instPartialOrderEReal
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SignType.instLinearOrder
OrderHom.instFunLike
SignType.sign
instZeroEReal
decidableLT
instNeg
SignType.instNeg
β€”coe_neg
sign_coe
Left.sign_neg
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
sign_top πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
EReal
SignType
PartialOrder.toPreorder
instPartialOrderEReal
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SignType.instLinearOrder
OrderHom.instFunLike
SignType.sign
instZeroEReal
decidableLT
Top.top
instTop
SignType.instOne
β€”β€”
strictAnti_div_right_of_neg πŸ“–mathematicalEReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
StrictAnti
DivInvMonoid.toDiv
instDivInvMonoid
β€”lt_of_le_of_ne
div_le_div_right_of_nonpos
le_of_lt
ne_of_lt
mul_div_cancel
ne_top_of_lt
strictMono_div_right_of_pos πŸ“–mathematicalEReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
StrictMono
DivInvMonoid.toDiv
instDivInvMonoid
β€”lt_of_le_of_ne
div_le_div_right_of_nonneg
le_of_lt
ne_of_lt
mul_div_cancel
ne_bot_of_gt
ne_of_gt
top_div_of_neg_ne_bot πŸ“–mathematicalEReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
DivInvMonoid.toDiv
instDivInvMonoid
Top.top
instTop
Bot.bot
instBotEReal
β€”top_mul_of_neg
inv_neg_of_neg_ne_bot
top_div_of_pos_ne_top πŸ“–mathematicalEReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
DivInvMonoid.toDiv
instDivInvMonoid
Top.top
instTop
β€”top_mul_of_pos
inv_pos_of_pos_ne_top
zero_div πŸ“–mathematicalβ€”EReal
DivInvMonoid.toDiv
instDivInvMonoid
instZeroEReal
β€”MulZeroClass.zero_mul

Mathlib.Meta.Positivity

Definitions

NameCategoryTheorems
evalERealDiv πŸ“–CompOpβ€”
evalERealInv πŸ“–CompOpβ€”

---

← Back to Index