Prod
📁 Source: Mathlib/Data/Finite/Prod.lean
Statistics
| Metric | Count |
|---|---|
| 3 | |
Theoremsfinite_left, finite_right, finite_left, finite_right, finite_image2, finite_prod, instPProd, instProd, prod_left, prod_right, finite, finite_left, finite_right, finite, finite_iff, image2, of_prod_left, of_prod_right, offDiag, prod, toFinset_offDiag, toFinset_prod, image2_left, image2_right, prod_left, prod_right, finite_image2, finite_image_fst_and_snd_iff, finite_prod, infinite_image2, infinite_prod | 31 |
| Total | 34 |
AddEquiv
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
finite_left 📖 | mathematical | — | FiniteAddEquiv | — | Finite.of_injectiveEquiv.finite_lefttoEquiv_injective |
finite_right 📖 | mathematical | — | FiniteAddEquiv | — | Finite.of_injectiveEquiv.finite_righttoEquiv_injective |
Equiv
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
finite_left 📖 | mathematical | — | FiniteEquiv | — | Finite.of_equivfinite_rightsymm_symm |
finite_right 📖 | mathematical | — | FiniteEquiv | — | Finite.of_injectiveFunction.Embedding.finiteextDFunLike.congr_fun |
Finite
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
instPProd 📖 | mathematical | — | Finite | — | of_equivinstProdinstFinitePLift |
instProd 📖 | mathematical | — | Finite | — | of_fintype |
prod_left 📖 | mathematical | — | Finite | — | of_surjectiveProd.fst_surjective |
prod_right 📖 | mathematical | — | Finite | — | of_surjectiveProd.snd_surjective |
Finite.Set
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
finite_image2 📖 | mathematical | — | FiniteSet.ElemSet.image2 | — | Set.image_prodfinite_imagefinite_prod |
finite_prod 📖 | mathematical | — | FiniteSet.ElemSProd.sprodSetSet.instSProd | — | Finite.of_equivFinite.instProd |
Function.Embedding
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
finite 📖 | mathematical | — | FiniteFunction.Embedding | — | isEmpty_or_nonemptyFinite.of_subsingletonIsEmpty.instSubsingletonFinite.of_injectivePi.finiteinjectiveDFunLike.coe_injective |
MulEquiv
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
finite_left 📖 | mathematical | — | FiniteMulEquiv | — | Finite.of_injectiveEquiv.finite_lefttoEquiv_injective |
finite_right 📖 | mathematical | — | FiniteMulEquiv | — | Finite.of_injectiveEquiv.finite_righttoEquiv_injective |
Pi
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
finite 📖 | — | Finite | — | — | Finite.of_equivFinite.of_fintypeinstFinitePLift |
Prod
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
finite_iff 📖 | mathematical | — | Finite | — | Finite.prod_leftFinite.prod_rightFinite.instProd |
Set
Definitions
| Name | Category | Theorems |
|---|---|---|
fintypeImage2 📖 | CompOp | — |
fintypeOffDiag 📖 | CompOp | |
fintypeProd 📖 | CompOp | — |
Theorems
Set.Finite
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
image2 📖 | mathematical | — | Set.FiniteSet.image2 | — | to_subtypeSet.toFiniteFinite.Set.finite_image2 |
of_prod_left 📖 | mathematical | Set.Nonempty | Set.Finite | — | subsetimage |
of_prod_right 📖 | mathematical | Set.Nonempty | Set.Finite | — | subsetimage |
offDiag 📖 | mathematical | — | Set.FiniteSet.offDiag | — | subsetprodSet.offDiag_subset_prod |
prod 📖 | mathematical | — | Set.FiniteSProd.sprodSetSet.instSProd | — | to_subtypeSet.toFiniteFinite.Set.finite_prod |
toFinset_offDiag 📖 | mathematical | — | toFinsetSet.offDiagoffDiagFinset.offDiag | — | Finset.extoffDiag |
toFinset_prod 📖 | mathematical | — | SProd.sprodFinsetFinset.instSProdtoFinsetSetSet.instSProdprod | — | Finset.extprod |
Set.Infinite
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
image2_left 📖 | mathematical | Set.InfiniteSetSet.instMembershipSet.InjOn | Set.image2 | — | monoSet.image_subset_image2_leftimage |
image2_right 📖 | mathematical | Set.InfiniteSetSet.instMembershipSet.InjOn | Set.image2 | — | monoSet.image_subset_image2_rightimage |
prod_left 📖 | mathematical | Set.InfiniteSet.Nonempty | SProd.sprodSetSet.instSProd | — | Set.Finite.of_prod_left |
prod_right 📖 | mathematical | Set.InfiniteSet.Nonempty | SProd.sprodSetSet.instSProd | — | Set.Finite.of_prod_right |
---