Documentation Verification Report

BooleanAlgebra

πŸ“ Source: Mathlib/Data/Finset/BooleanAlgebra.lean

Statistics

MetricCount
DefinitionsbooleanAlgebra, boundedOrder, decidableCodisjoint, decidableIsCompl
4
Theoremseq_univ, codisjoint_left, codisjoint_right, coe_compl, coe_filter_univ, compl_empty, compl_eq_empty_iff, compl_eq_univ_iff, compl_eq_univ_sdiff, compl_erase, compl_filter, compl_insert, compl_inter, compl_ne_univ_iff_nonempty, compl_singleton, compl_ssubset_compl, compl_subset_compl, compl_union, compl_univ, filter_univ_mem, image_univ_equiv, image_univ_of_surjective, insert_compl_insert, insert_compl_self, insert_inj_on', inter_compl, inter_eq_univ, inter_univ, map_univ_equiv, map_univ_of_surjective, mem_compl, notMem_compl, sdiff_eq_inter_compl, singleton_eq_univ, singleton_ne_univ, ssubset_univ_iff, subset_compl_comm, subset_compl_iff_disjoint_left, subset_compl_iff_disjoint_right, subset_compl_singleton, subtype_eq_univ, subtype_univ, top_eq_univ, union_compl, univ_eq_empty, univ_eq_empty_iff, univ_filter_exists, univ_filter_mem_range, univ_inter, univ_map_equiv_to_embedding, univ_map_subtype, univ_nonempty, univ_nonempty_iff, univ_nontrivial, univ_nontrivial_iff, univ_subset_iff, univ_unique, univ_val_map_subtype_restrict, univ_val_map_subtype_val
59
Total63

Finset

Definitions

NameCategoryTheorems
booleanAlgebra πŸ“–CompOp
117 mathmath: insert_compl_self, compl_ssubset_compl, MeasureTheory.GridLines.T_lmarginal_antitone, SSet.horn₃₁.desc.multicofork_Ο€_two, Ioi_disjUnion_Iio, Equiv.Perm.support_prod_of_pairwise_disjoint, compl_inter, SSet.horn.faceSingletonComplIso_inv_ΞΉ_assoc, compl_eq_univ_sdiff, card_compl_add_card, Fin.image_succ_univ, Affine.Simplex.mongePointVSubFaceCentroidWeightsWithCircumcenter_eq_sub, Set.toFinset_compl, insert_compl_insert, SSet.horn₃₂.desc.multicofork_Ο€_one, sized_compls, union_compl, Matrix.adjp_apply, card_add_card_compl, compl_erase, inclusion_exclusion_card_inf_compl, compl_union, shadow_compls, card_compl, compl_singleton, SimpleGraph.neighborFinset_completeEquipartiteGraph, Affine.Simplex.inner_mongePoint_vsub_face_centroid_vsub, SSet.horn₃₁.desc.multicofork_pt, SimpleGraph.neighborFinset_compl, SSet.horn.faceSingletonComplIso_inv_ΞΉ, inter_compl, SSet.stdSimplex.range_Ξ΄, NumberField.InfinitePlace.card_eq_card_isUnramifiedIn, Fintype.prod_add, subset_compl_singleton, piecewise_compl, inclusion_exclusion_sum_inf_compl, SSet.horn₃₁.desc.multicofork_Ο€_two_assoc, Affine.Simplex.mongePlane_def, SSet.horn₃₁.desc.multicofork_Ο€_zero_assoc, prod_mul_prod_compl, Affine.Simplex.ExcenterExists.excenterWeights_eq_excenterWeights_iff, Fintype.prod_eq_prod_compl_mul, isCoatom_compl_singleton, SSet.stdSimplex.face_obj, exists_sum_eq_one_iff_pairwise_coprime', compl_insert, Fintype.prod_eq_mul_prod_compl, sum_compl_add_sum, preimage_compl, Affine.Simplex.exsphere_compl, compl_filter, SSet.stdSimplex.faceSingletonComplIso_hom_ΞΉ, NumberField.InfinitePlace.card_isUnramified_compl, mem_compl, coe_compl, Affine.Simplex.exradius_compl, compl_univ, Equiv.Perm.card_compl_support_modEq, Set.Sized.compls, compl_empty, prod_prod_Ioi_mul_eq_prod_prod_off_diag, SSet.face_le_horn, orderEmbOfFin_compl_singleton_eq_succAboveOrderEmb, Set.powersetCard.coe_compl, AhlswedeZhang.infSum_compls_add_supSum, SSet.horn.faceΞΉ_ΞΉ, Fin.image_castSucc, SSet.horn_eq_iSup, SimpleGraph.sdiff_compl_neighborFinset_inter_eq, SSet.horn₃₂.desc.multicofork_Ο€_zero_assoc, sum_sum_Ioi_add_eq_sum_sum_off_diag, compl_eq_univ_iff, Fintype.sum_eq_sum_compl_add, SSet.horn.faceΞΉ_ΞΉ_assoc, mem_inf, Equiv.Perm.support_prod_le, SSet.horn.multicoequalizerDiagram, SSet.horn₃₁.desc.multicofork_Ο€_three_assoc, subset_compl_comm, card_compl_lt_iff_nonempty, SSet.horn₃₁.desc.multicofork_Ο€_zero, SSet.stdSimplex.ofSimplex_yonedaEquiv_Ξ΄, SSet.horn₃₂.desc.multicofork_Ο€_three, Affine.Simplex.mongePoint_vsub_face_centroid_eq_weightedVSub_of_pointsWithCircumcenter, SSet.stdSimplex.faceSingletonComplIso_hom_ΞΉ_assoc, upShadow_compls, SSet.boundary_eq_iSup, Set.powersetCard.coe_mulActionHom_compl, isCoatom_iff, SSet.horn₃₂.desc.multicofork_pt, Affine.Simplex.excenterExists_compl, SimpleGraph.compl_neighborFinset_sdiff_inter_eq, Fintype.sum_eq_add_sum_compl, Fin.image_succAbove_univ, prod_compl_mul_prod, subset_compl_iff_disjoint_left, Affine.Simplex.excenterWeightsUnnorm_compl, SSet.horn₃₂.desc.multicofork_Ο€_zero, SSet.horn₃₂.desc.multicofork_Ο€_three_assoc, SSet.horn₃₂.desc.multicofork_Ο€_one_assoc, Fintype.not_linearIndependent_iffβ‚’β‚›, Affine.Simplex.excenter_compl, sum_add_sum_compl, SSet.horn₃₁.desc.multicofork_Ο€_three, Affine.Simplex.ExcenterExists.excenter_eq_excenter_iff, compl_subset_compl, sdiff_eq_inter_compl, Affine.Simplex.faceOppositeCentroid_eq_affineCombination, Affine.Simplex.excenterWeights_compl, SSet.stdSimplex.face_singleton_compl, compl_eq_empty_iff, subset_compl_iff_disjoint_right, card_truncatedSup_union_add_card_truncatedSup_infs, notMem_compl, insert_inj_on', Set.Finite.toFinset_compl
boundedOrder πŸ“–CompOp
4 mathmath: top_eq_univ, codisjoint_left, codisjoint_right, card_truncatedInf_union_add_card_truncatedInf_sups
decidableCodisjoint πŸ“–CompOpβ€”
decidableIsCompl πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
codisjoint_left πŸ“–mathematicalβ€”Codisjoint
Finset
partialOrder
BoundedOrder.toOrderTop
Preorder.toLE
PartialOrder.toPreorder
boundedOrder
instMembership
β€”β€”
codisjoint_right πŸ“–mathematicalβ€”Codisjoint
Finset
partialOrder
BoundedOrder.toOrderTop
Preorder.toLE
PartialOrder.toPreorder
boundedOrder
instMembership
β€”codisjoint_comm
codisjoint_left
coe_compl πŸ“–mathematicalβ€”SetLike.coe
Finset
instSetLike
Compl.compl
BooleanAlgebra.toCompl
booleanAlgebra
Set
Set.instCompl
β€”Set.ext
mem_compl
coe_filter_univ πŸ“–mathematicalβ€”SetLike.coe
Finset
instSetLike
filter
univ
setOf
β€”coe_filter
compl_empty πŸ“–mathematicalβ€”Compl.compl
Finset
BooleanAlgebra.toCompl
booleanAlgebra
instEmptyCollection
univ
β€”compl_bot
compl_eq_empty_iff πŸ“–mathematicalβ€”Compl.compl
Finset
BooleanAlgebra.toCompl
booleanAlgebra
instEmptyCollection
univ
β€”compl_eq_bot
compl_eq_univ_iff πŸ“–mathematicalβ€”Compl.compl
Finset
BooleanAlgebra.toCompl
booleanAlgebra
univ
instEmptyCollection
β€”compl_eq_top
compl_eq_univ_sdiff πŸ“–mathematicalβ€”Compl.compl
Finset
BooleanAlgebra.toCompl
booleanAlgebra
instSDiff
univ
β€”β€”
compl_erase πŸ“–mathematicalβ€”Compl.compl
Finset
BooleanAlgebra.toCompl
booleanAlgebra
erase
instInsert
β€”ext
compl_filter πŸ“–mathematicalβ€”Compl.compl
Finset
BooleanAlgebra.toCompl
booleanAlgebra
filter
univ
β€”ext
compl_insert πŸ“–mathematicalβ€”Compl.compl
Finset
BooleanAlgebra.toCompl
booleanAlgebra
instInsert
erase
β€”ext
compl_inter πŸ“–mathematicalβ€”Compl.compl
Finset
BooleanAlgebra.toCompl
booleanAlgebra
instInter
instUnion
β€”compl_inf
compl_ne_univ_iff_nonempty πŸ“–mathematicalβ€”Nonemptyβ€”β€”
compl_singleton πŸ“–mathematicalβ€”Compl.compl
Finset
BooleanAlgebra.toCompl
booleanAlgebra
instSingleton
erase
univ
β€”compl_eq_univ_sdiff
sdiff_singleton_eq_erase
compl_ssubset_compl πŸ“–mathematicalβ€”Finset
instHasSSubset
Compl.compl
BooleanAlgebra.toCompl
booleanAlgebra
β€”compl_lt_compl_iff_lt
compl_subset_compl πŸ“–mathematicalβ€”Finset
instHasSubset
Compl.compl
BooleanAlgebra.toCompl
booleanAlgebra
β€”compl_le_compl_iff_le
compl_union πŸ“–mathematicalβ€”Compl.compl
Finset
BooleanAlgebra.toCompl
booleanAlgebra
instUnion
instInter
β€”compl_sup
compl_univ πŸ“–mathematicalβ€”Compl.compl
Finset
BooleanAlgebra.toCompl
booleanAlgebra
univ
instEmptyCollection
β€”compl_top
filter_univ_mem πŸ“–mathematicalβ€”filter
Finset
instMembership
decidableMem
univ
β€”filter_mem_eq_inter
univ_inter
image_univ_equiv πŸ“–mathematicalβ€”image
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
univ
β€”image_univ_of_surjective
Equiv.surjective
image_univ_of_surjective πŸ“–mathematicalβ€”image
univ
β€”eq_univ_of_forall
Function.Surjective.forall
mem_image_of_mem
mem_univ
insert_compl_insert πŸ“–mathematicalFinset
instMembership
instInsert
Compl.compl
BooleanAlgebra.toCompl
booleanAlgebra
β€”compl_insert
insert_erase
mem_compl
insert_compl_self πŸ“–mathematicalβ€”Finset
instInsert
Compl.compl
BooleanAlgebra.toCompl
booleanAlgebra
instSingleton
univ
β€”compl_erase
erase_singleton
compl_empty
insert_inj_on' πŸ“–mathematicalβ€”Set.InjOn
Finset
instInsert
SetLike.coe
instSetLike
Compl.compl
BooleanAlgebra.toCompl
booleanAlgebra
β€”coe_compl
insert_inj_on
inter_compl πŸ“–mathematicalβ€”Finset
instInter
Compl.compl
BooleanAlgebra.toCompl
booleanAlgebra
instEmptyCollection
β€”inf_compl_eq_bot
inter_eq_univ πŸ“–mathematicalβ€”Finset
instInter
univ
β€”inf_eq_top_iff
inter_univ πŸ“–mathematicalβ€”Finset
instInter
univ
β€”inter_comm
univ_inter
map_univ_equiv πŸ“–mathematicalβ€”map
Equiv.toEmbedding
univ
β€”map_univ_of_surjective
Equiv.surjective
map_univ_of_surjective πŸ“–mathematicalDFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
map
univ
β€”eq_univ_of_forall
Function.Surjective.forall
mem_map_of_mem
mem_univ
mem_compl πŸ“–mathematicalβ€”Finset
instMembership
Compl.compl
BooleanAlgebra.toCompl
booleanAlgebra
β€”β€”
notMem_compl πŸ“–mathematicalβ€”Finset
instMembership
Compl.compl
BooleanAlgebra.toCompl
booleanAlgebra
β€”mem_compl
sdiff_eq_inter_compl πŸ“–mathematicalβ€”Finset
instSDiff
instInter
Compl.compl
BooleanAlgebra.toCompl
booleanAlgebra
β€”sdiff_eq
singleton_eq_univ πŸ“–mathematicalβ€”Finset
instSingleton
univ
β€”ext
singleton_ne_univ πŸ“–β€”β€”β€”β€”SetLike.coe_ne_coe
coe_singleton
coe_univ
ssubset_univ_iff πŸ“–mathematicalβ€”Finset
instHasSSubset
univ
β€”lt_top_iff_ne_top
subset_compl_comm πŸ“–mathematicalβ€”Finset
instHasSubset
Compl.compl
BooleanAlgebra.toCompl
booleanAlgebra
β€”le_compl_iff_le_compl
subset_compl_iff_disjoint_left πŸ“–mathematicalβ€”Finset
instHasSubset
Compl.compl
BooleanAlgebra.toCompl
booleanAlgebra
Disjoint
partialOrder
instOrderBot
β€”le_compl_iff_disjoint_left
subset_compl_iff_disjoint_right πŸ“–mathematicalβ€”Finset
instHasSubset
Compl.compl
BooleanAlgebra.toCompl
booleanAlgebra
Disjoint
partialOrder
instOrderBot
β€”le_compl_iff_disjoint_right
subset_compl_singleton πŸ“–mathematicalβ€”Finset
instHasSubset
Compl.compl
BooleanAlgebra.toCompl
booleanAlgebra
instSingleton
instMembership
β€”subset_compl_comm
singleton_subset_iff
mem_compl
subtype_eq_univ πŸ“–mathematicalβ€”subtype
univ
Finset
instMembership
β€”β€”
subtype_univ πŸ“–mathematicalβ€”subtype
univ
β€”β€”
top_eq_univ πŸ“–mathematicalβ€”Top.top
Finset
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
partialOrder
BoundedOrder.toOrderTop
boundedOrder
univ
β€”β€”
union_compl πŸ“–mathematicalβ€”Finset
instUnion
Compl.compl
BooleanAlgebra.toCompl
booleanAlgebra
univ
β€”sup_compl_eq_top
univ_eq_empty πŸ“–mathematicalβ€”univ
Finset
instEmptyCollection
β€”univ_eq_empty_iff
univ_eq_empty_iff πŸ“–mathematicalβ€”univ
Finset
instEmptyCollection
IsEmpty
β€”Mathlib.Tactic.Contrapose.contrapose_iff₁
univ_nonempty_iff
univ_filter_exists πŸ“–mathematicalβ€”filter
univ
image
β€”ext
univ_filter_mem_range πŸ“–mathematicalβ€”filter
Set
Set.instMembership
Set.range
univ
image
β€”β€”
univ_inter πŸ“–mathematicalβ€”Finset
instInter
univ
β€”ext
univ_map_equiv_to_embedding πŸ“–mathematicalβ€”map
Equiv.toEmbedding
univ
β€”eq_univ_iff_forall
mem_map
mem_univ
Equiv.apply_symm_apply
univ_map_subtype πŸ“–mathematicalβ€”map
Function.Embedding.subtype
univ
filter
β€”subtype_map
subtype_univ
univ_nonempty πŸ“–mathematicalβ€”Nonempty
univ
β€”univ_nonempty_iff
univ_nonempty_iff πŸ“–mathematicalβ€”Nonempty
univ
β€”coe_nonempty
coe_univ
Set.nonempty_iff_univ_nonempty
univ_nontrivial πŸ“–mathematicalβ€”Nontrivial
univ
β€”univ_nontrivial_iff
univ_nontrivial_iff πŸ“–mathematicalβ€”Nontrivial
univ
Nontrivial
β€”Nontrivial.eq_1
coe_univ
Set.nontrivial_univ_iff
univ_subset_iff πŸ“–mathematicalβ€”Finset
instHasSubset
univ
β€”top_le_iff
univ_unique πŸ“–mathematicalβ€”univ
Finset
instSingleton
Unique.instInhabited
β€”ext
mem_univ
mem_singleton
Unique.instSubsingleton
univ_val_map_subtype_restrict πŸ“–mathematicalβ€”Multiset.map
Subtype.restrict
val
univ
filter
β€”univ_val_map_subtype_val
Multiset.map_map
Subtype.restrict_def
univ_val_map_subtype_val πŸ“–mathematicalβ€”Multiset.map
val
univ
filter
β€”map_val
univ_map_subtype

Finset.Nonempty

Theorems

NameKindAssumesProvesValidatesDepends On
eq_univ πŸ“–mathematicalFinset.NonemptyFinset.univβ€”Finset.eq_univ_of_forall

---

← Back to Index