toFinset 📖 | CompOp | 112 mathmath: Ideal.pow_multiset_sum_mem_span_pow, Finset.prod_multiset_map_count, Submodule.isInternal_prime_power_torsion_of_pid, toDFinsupp_support, Equiv.Perm.card_of_cycleType_mul_eq, Finset.val_toFinset, card_Ico, Ideal.Factors.fact_ramificationIdx_neZero, toFinset_cons, toFinset_filter, toFinset_sum_count_eq, toFinset_eq_empty, IsPrimitiveRoot.is_roots_of_minpoly, Finset.sym2_toFinset, Polynomial.rootsExpandPowEquivRoots_apply, Equiv.Perm.OnCycleFactors.nat_card_range_toPermHom, Finset.image_toFinset, toFinset_card_le, Submodule.isInternal_prime_power_torsion_of_is_torsion_by_ideal, UniqueFactorizationMonoid.factors_pow_count_prod, Finset.map_comp_coe_apply, Polynomial.prod_multiset_root_eq_finset_root, Polynomial.rootsExpandEquivRoots_apply, Polynomial.card_roots_toFinset_le_card_roots_derivative_diff_roots_succ, toFinset_nsmul, PMF.mem_support_ofMultiset_iff, toFinset_add, Cubic.card_roots_of_disc_ne_zero, Cubic.card_roots_of_discr_ne_zero, card_Ioc, Polynomial.roots_expand_image_frobenius, bell_mul_eq, Polynomial.bUnion_roots_finite, Ideal.Factors.isScalarTower, Polynomial.rootsExpandPowToRoots_apply, Equiv.Perm.card_isConj_eq, toFinset_prod_dvd_prod, card_uIcc, card_le_card_toFinset_add_one_iff, Equiv.Perm.card_of_cycleType, DFinsupp.support_mk'_subset, Polynomial.eq_centerMass_of_eval_derivative_eq_zero, Polynomial.roots_expand_image_frobenius_subset, Polynomial.rootSet_def, Finset.map_toFinset, PMF.support_ofMultiset, List.toFinset_coe, AlternatingGroup.card_of_cycleType, Nat.sum_divisors_filter_squarefree, toFinset_range, Finset.map_comp_coe, Ideal.Factors.liesOver, toFinset_zero, MvPolynomial.vars_def, toFinset_replicate, disjoint_toFinset, card_toFinset, Polynomial.sum_derivRootWeight_pos, Finset.sum_multiset_map_count, toFinset_card_eq_one_iff, toFinset_union, bell_eq, Ideal.Factors.finrank_pow_ramificationIdx, Polynomial.rootsExpandToRoots_apply, Finsupp.toFinset_toMultiset, Aesop.toFinset_nonempty_of_ne, Cycle.toFinset_toMultiset, toFinset_card_of_nodup, finite_toSet_toFinset, toFinset_card_eq_card_iff_nodup, Submodule.isInternal_prime_power_torsion, Polynomial.natSepDegree_eq_of_isAlgClosed, toFinset_subset, Finset.sum_mem_multiset, card_Iic, Cubic.card_roots_le, Polynomial.roots_expand_image_iterateFrobenius, Polynomial.nthRootsFinset_def, toFinset_inter, Polynomial.roots_expand_pow_image_iterateFrobenius_subset, toFinset_dedup, toFinset_eq, toFinset_ssubset, Ideal.Factors.finiteDimensional_quotient_pow, Finset.prod_mem_multiset, card_Icc, toFinset_map, Ideal.Factors.isPrime, Finset.sup_toFinset, Nat.divisors_filter_squarefree, toFinset_sum_count_nsmul_eq, Polynomial.natSepDegree_eq_of_splits, Finset.prod_multiset_count, image_toEnumFinset_fst, Finset.sum_multiset_count, Ideal.Factors.piQuotientEquiv_mk, card_Ioo, toFinsupp_support, mem_toFinset, Polynomial.card_roots_toFinset_le_derivative, IsDedekindDomain.quotientEquivPiFactors_mk, toFinset_singleton, AlternatingGroup.card_of_cycleType_mul_eq, support_factorization, Polynomial.normalizedFactors_cyclotomic_card, Equiv.Perm.card_isConj_mul_eq, Equiv.Perm.nat_card_centralizer, Ideal.Factors.piQuotientEquiv_map, Finset.bind_toFinset, toFinset_nonempty, toFinset_eq_singleton_iff, toFinset_val
|