Documentation Verification Report

Density

πŸ“ Source: Mathlib/Data/Finset/Density.lean

Statistics

MetricCount
Definitionsdens
1
Theoremsdens_ne_zero, dens_pos, card_mul_dens, dens_cons, dens_disjUnion, dens_empty, dens_eq_card_div_card, dens_eq_one, dens_eq_zero, dens_filter_add_dens_filter_not_eq_dens, dens_image, dens_inter_add_dens_sdiff, dens_inter_add_dens_union, dens_le_dens, dens_le_dens_sdiff_add_dens, dens_le_one, dens_lt_dens, dens_map_equiv, dens_map_le, dens_mono, dens_mul_card, dens_ne_one, dens_ne_zero, dens_pos, dens_sdiff, dens_sdiff_add_dens, dens_sdiff_add_dens_eq_dens, dens_sdiff_add_dens_inter, dens_sdiff_comm, dens_singleton, dens_strictMono, dens_union_add_dens_inter, dens_union_le, dens_union_of_disjoint, dens_univ, le_dens_sdiff, natCast_card_mul_nnratCast_dens, nnratCast_dens, nnratCast_dens_mul_natCast_card
39
Total40

Finset

Definitions

NameCategoryTheorems
dens πŸ“–CompOp
51 mathmath: dens_union_of_disjoint, dens_cons, dens_sdiff_comm, dens_map_le, addConst_le_inv_dens, dens_inter_add_dens_sdiff, card_mul_dens, dens_map_equiv, dens_sdiff_add_dens_inter, dens_union_add_dens_inter, dens_eq_sum_dens_image, dens_le_one, dens_eq_card_div_card, dens_disjiUnion, dens_strictMono, dens_eq_one, dens_sdiff_add_dens, dens_mul_card, dens_empty, dens_biUnion_le, dens_le_dens_sdiff_add_dens, dens_lt_dens, dens_inv, Fintype.expect_ite_mem, mulConst_le_inv_dens, le_dens_sdiff, dens_neg, dens_image, nnratCast_dens, dens_filter_add_dens_filter_not_eq_dens, dens_mono, dens_inter_add_dens_union, dens_singleton, natCast_card_mul_nnratCast_dens, dens_biUnion, dens_eq_zero, dens_sdiff_add_dens_eq_dens, dens_disjUnion, subConst_le_inv_dens, dens_smul_finset, dens_sdiff, dens_eq_sum_dens_fiberwise, Numbering.dens_prefixed, dens_union_le, Nonempty.dens_pos, nnratCast_dens_mul_natCast_card, dens_le_dens, divConst_le_inv_dens, dens_univ, dens_vadd_finset, dens_pos

Theorems

NameKindAssumesProvesValidatesDepends On
card_mul_dens πŸ“–mathematicalβ€”NNRat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Fintype.card
dens
card
β€”isEmpty_or_nonempty
Fintype.card_eq_zero
Nat.cast_zero
Unique.instSubsingleton
dens_empty
MulZeroClass.mul_zero
dens.eq_1
mul_div_cancelβ‚€
NNRat.instCharZero
Fintype.card_ne_zero
dens_cons πŸ“–mathematicalFinset
instMembership
dens
cons
NNRat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
NNRat.instInv
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Fintype.card
β€”card_cons
Nat.cast_add
Nat.cast_one
add_div
one_div
dens_disjUnion πŸ“–mathematicalDisjoint
Finset
partialOrder
instOrderBot
dens
disjUnion
NNRat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
β€”card_disjUnion
Nat.cast_add
add_div
dens_empty πŸ“–mathematicalβ€”dens
Finset
instEmptyCollection
NNRat
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
β€”Nat.cast_zero
zero_div
dens_eq_card_div_card πŸ“–mathematicalβ€”dens
NNRat
NNRat.instDiv
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
card
Fintype.card
β€”β€”
dens_eq_one πŸ“–mathematicalβ€”dens
NNRat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
univ
β€”NNRat.instCharZero
dens_eq_zero πŸ“–mathematicalβ€”dens
NNRat
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
Finset
instEmptyCollection
β€”NNRat.instCharZero
eq_empty_of_isEmpty
dens_filter_add_dens_filter_not_eq_dens πŸ“–mathematicalβ€”NNRat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
dens
filter
β€”dens_union_of_disjoint
disjoint_filter_filter_not
filter_union_filter_not_eq
dens_image πŸ“–mathematicalFunction.Bijectivedens
image
β€”map_eq_image
dens_map_equiv
dens_inter_add_dens_sdiff πŸ“–mathematicalβ€”NNRat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
dens
Finset
instInter
instSDiff
β€”add_comm
dens_sdiff_add_dens_inter
dens_inter_add_dens_union πŸ“–mathematicalβ€”NNRat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
dens
Finset
instInter
instUnion
β€”add_comm
dens_union_add_dens_inter
dens_le_dens πŸ“–mathematicalFinset
instHasSubset
NNRat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNNRat
dens
β€”div_le_div_of_nonneg_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
instIsStrictOrderedRingNNRat
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
NNRat.instCharZero
card_mono
Nat.cast_nonneg'
dens_le_dens_sdiff_add_dens πŸ“–mathematicalβ€”NNRat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNNRat
dens
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
Finset
instSDiff
β€”dens_le_dens
subset_union_left
dens_sdiff_add_dens
dens_le_one πŸ“–mathematicalβ€”NNRat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNNRat
dens
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
β€”isEmpty_or_nonempty
Unique.instSubsingleton
dens_empty
NNRat.instCanonicallyOrderedAdd
dens_univ
dens_le_dens
subset_univ
dens_lt_dens πŸ“–mathematicalFinset
instHasSSubset
NNRat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNNRat
dens
β€”div_lt_div_of_pos_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
instIsStrictOrderedRingNNRat
Nat.strictMono_cast
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
NNRat.instCharZero
card_lt_card
Nat.cast_zero
card_le_univ
dens_map_equiv πŸ“–mathematicalβ€”dens
map
Equiv.toEmbedding
β€”card_map
Fintype.card_congr
dens_map_le πŸ“–mathematicalβ€”NNRat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNNRat
dens
map
β€”isEmpty_or_nonempty
Unique.instSubsingleton
dens_empty
card_map
div_le_divβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
instIsStrictOrderedRingNNRat
Nat.cast_nonneg'
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
le_refl
Nat.cast_zero
NNRat.instCharZero
Fintype.card_pos
Nat.mono_cast
Fintype.card_le_of_injective
Function.Embedding.inj'
dens_mono πŸ“–mathematicalβ€”Monotone
Finset
NNRat
PartialOrder.toPreorder
partialOrder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNNRat
dens
β€”dens_le_dens
dens_mul_card πŸ“–mathematicalβ€”NNRat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
dens
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Fintype.card
card
β€”mul_comm
card_mul_dens
dens_ne_one πŸ“–β€”β€”β€”β€”Iff.not
dens_eq_one
dens_ne_zero πŸ“–mathematicalβ€”Nonemptyβ€”Iff.not
dens_eq_zero
nonempty_iff_ne_empty
dens_pos πŸ“–mathematicalβ€”NNRat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNNRat
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
dens
Nonempty
β€”pos_iff_ne_zero
NNRat.instCanonicallyOrderedAdd
dens_ne_zero
dens_sdiff πŸ“–mathematicalFinset
instHasSubset
dens
instSDiff
NNRat
instSubNNRat
β€”eq_tsub_of_add_eq
NNRat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRingNNRat
dens_sdiff_add_dens_eq_dens
dens_sdiff_add_dens πŸ“–mathematicalβ€”NNRat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
dens
Finset
instSDiff
instUnion
β€”dens_union_of_disjoint
sdiff_disjoint
sdiff_union_self_eq_union
dens_sdiff_add_dens_eq_dens πŸ“–mathematicalFinset
instHasSubset
NNRat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
dens
instSDiff
β€”card_sdiff_add_card_eq_card
Nat.cast_add
add_div
dens_sdiff_add_dens_inter πŸ“–mathematicalβ€”NNRat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
dens
Finset
instSDiff
instInter
β€”dens_union_of_disjoint
disjoint_sdiff_inter
sdiff_union_inter
dens_sdiff_comm πŸ“–mathematicalcarddens
Finset
instSDiff
β€”add_left_injective
AddRightCancelSemigroup.toIsRightCancelAdd
dens_sdiff_add_dens
union_comm
dens_singleton πŸ“–mathematicalβ€”dens
Finset
instSingleton
NNRat
NNRat.instInv
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
Fintype.card
β€”card_singleton
Nat.cast_one
one_div
dens_strictMono πŸ“–mathematicalβ€”StrictMono
Finset
NNRat
PartialOrder.toPreorder
partialOrder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNNRat
dens
β€”dens_lt_dens
dens_union_add_dens_inter πŸ“–mathematicalβ€”NNRat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
dens
Finset
instUnion
instInter
β€”card_union_add_card_inter
dens_union_le πŸ“–mathematicalβ€”NNRat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNNRat
dens
Finset
instUnion
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
β€”le_add_of_nonneg_right
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRingNNRat
zero_le'
dens_union_add_dens_inter
dens_union_of_disjoint πŸ“–mathematicalDisjoint
Finset
partialOrder
instOrderBot
dens
instUnion
NNRat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
β€”disjUnion_eq_union
dens_disjUnion
dens_univ πŸ“–mathematicalβ€”dens
univ
NNRat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
β€”div_self
NNRat.instCharZero
le_dens_sdiff πŸ“–mathematicalβ€”NNRat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNNRat
instSubNNRat
dens
Finset
instSDiff
β€”tsub_le_iff_right
NNRat.instOrderedSub
dens_le_dens_sdiff_add_dens
natCast_card_mul_nnratCast_dens πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Fintype.card
NNRat.cast
DivisionSemiring.toNNRatCast
dens
card
β€”NNRat.cast_natCast
card_mul_dens
nnratCast_dens πŸ“–mathematicalβ€”NNRat.cast
DivisionSemiring.toNNRatCast
Semifield.toDivisionSemiring
dens
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
card
Fintype.card
β€”NNRat.cast_div
NNRat.cast_natCast
nnratCast_dens_mul_natCast_card πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.cast
DivisionSemiring.toNNRatCast
dens
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Fintype.card
card
β€”NNRat.cast_natCast
dens_mul_card

Finset.Nonempty

Theorems

NameKindAssumesProvesValidatesDepends On
dens_ne_zero πŸ“–β€”Finset.Nonemptyβ€”β€”Finset.dens_ne_zero
dens_pos πŸ“–mathematicalFinset.NonemptyNNRat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNNRat
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
Finset.dens
β€”Finset.dens_pos

---

← Back to Index