π Source: Mathlib/Data/Finset/Density.lean
dens
dens_ne_zero
dens_pos
card_mul_dens
dens_cons
dens_disjUnion
dens_empty
dens_eq_card_div_card
dens_eq_one
dens_eq_zero
dens_filter_add_dens_filter_not_eq_dens
dens_image
dens_inter_add_dens_sdiff
dens_inter_add_dens_union
dens_le_dens
dens_le_dens_sdiff_add_dens
dens_le_one
dens_lt_dens
dens_map_equiv
dens_map_le
dens_mono
dens_mul_card
dens_ne_one
dens_sdiff
dens_sdiff_add_dens
dens_sdiff_add_dens_eq_dens
dens_sdiff_add_dens_inter
dens_sdiff_comm
dens_singleton
dens_strictMono
dens_union_add_dens_inter
dens_union_le
dens_union_of_disjoint
dens_univ
le_dens_sdiff
natCast_card_mul_nnratCast_dens
nnratCast_dens
nnratCast_dens_mul_natCast_card
addConst_le_inv_dens
dens_eq_sum_dens_image
dens_disjiUnion
dens_biUnion_le
dens_inv
Fintype.expect_ite_mem
mulConst_le_inv_dens
dens_neg
dens_biUnion
subConst_le_inv_dens
dens_smul_finset
dens_eq_sum_dens_fiberwise
Numbering.dens_prefixed
Nonempty.dens_pos
divConst_le_inv_dens
dens_vadd_finset
NNRat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Fintype.card
card
isEmpty_or_nonempty
Fintype.card_eq_zero
Nat.cast_zero
Unique.instSubsingleton
MulZeroClass.mul_zero
dens.eq_1
mul_div_cancelβ
NNRat.instCharZero
Fintype.card_ne_zero
Finset
instMembership
cons
Distrib.toAdd
NNRat.instInv
card_cons
Nat.cast_add
Nat.cast_one
add_div
one_div
Disjoint
partialOrder
instOrderBot
disjUnion
card_disjUnion
instEmptyCollection
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
zero_div
NNRat.instDiv
AddMonoidWithOne.toOne
univ
eq_empty_of_isEmpty
filter
disjoint_filter_filter_not
filter_union_filter_not_eq
Function.Bijective
image
map_eq_image
instInter
instSDiff
add_comm
instUnion
instHasSubset
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNNRat
div_le_div_of_nonneg_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
instIsStrictOrderedRingNNRat
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
card_mono
Nat.cast_nonneg'
subset_union_left
NNRat.instCanonicallyOrderedAdd
subset_univ
instHasSSubset
Preorder.toLT
div_lt_div_of_pos_right
Nat.strictMono_cast
card_lt_card
card_le_univ
map
Equiv.toEmbedding
card_map
Fintype.card_congr
div_le_divβ
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
le_refl
Fintype.card_pos
Nat.mono_cast
Fintype.card_le_of_injective
Function.Embedding.inj'
Monotone
mul_comm
Iff.not
Nonempty
nonempty_iff_ne_empty
pos_iff_ne_zero
instSubNNRat
eq_tsub_of_add_eq
NNRat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
sdiff_disjoint
sdiff_union_self_eq_union
card_sdiff_add_card_eq_card
disjoint_sdiff_inter
sdiff_union_inter
add_left_injective
AddRightCancelSemigroup.toIsRightCancelAdd
union_comm
instSingleton
card_singleton
StrictMono
card_union_add_card_inter
le_add_of_nonneg_right
zero_le'
disjUnion_eq_union
div_self
tsub_le_iff_right
NNRat.cast
DivisionSemiring.toNNRatCast
NNRat.cast_natCast
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
NNRat.cast_div
Finset.Nonempty
Finset.dens_ne_zero
Finset.dens
Finset.dens_pos
---
β Back to Index