Documentation Verification Report

NAry

šŸ“ Source: Mathlib/Data/Finset/NAry.lean

Statistics

MetricCount
Definitionsimageā‚‚
1
Theoremsimageā‚‚, of_imageā‚‚_left, of_imageā‚‚_right, biUnion_image_left, biUnion_image_right, card_dvd_card_imageā‚‚_left, card_dvd_card_imageā‚‚_right, card_imageā‚‚, card_imageā‚‚_iff, card_imageā‚‚_le, card_imageā‚‚_singleton_left, card_imageā‚‚_singleton_right, card_le_card_imageā‚‚_left, card_le_card_imageā‚‚_right, coe_imageā‚‚, exists_mem_imageā‚‚, forall_mem_imageā‚‚, image_imageā‚‚, image_imageā‚‚_antidistrib, image_imageā‚‚_antidistrib_left, image_imageā‚‚_antidistrib_right, image_imageā‚‚_distrib, image_imageā‚‚_distrib_left, image_imageā‚‚_distrib_right, image_imageā‚‚_right_anticomm, image_imageā‚‚_right_comm, image_subset_imageā‚‚_left, image_subset_imageā‚‚_right, image_uncurry_product, imageā‚‚_assoc, imageā‚‚_comm, imageā‚‚_congr, imageā‚‚_congr', imageā‚‚_curry, imageā‚‚_distrib_subset_left, imageā‚‚_distrib_subset_right, imageā‚‚_empty_left, imageā‚‚_empty_right, imageā‚‚_eq_empty_iff, imageā‚‚_image_left, imageā‚‚_image_left_anticomm, imageā‚‚_image_left_comm, imageā‚‚_image_right, imageā‚‚_imageā‚‚_imageā‚‚_comm, imageā‚‚_insert_left, imageā‚‚_insert_right, imageā‚‚_inter_left, imageā‚‚_inter_right, imageā‚‚_inter_singleton, imageā‚‚_inter_subset_left, imageā‚‚_inter_subset_right, imageā‚‚_inter_union_subset, imageā‚‚_inter_union_subset_union, imageā‚‚_left, imageā‚‚_left_comm, imageā‚‚_left_identity, imageā‚‚_mk_eq_product, imageā‚‚_nonempty_iff, imageā‚‚_right, imageā‚‚_right_comm, imageā‚‚_right_identity, imageā‚‚_singleton, imageā‚‚_singleton_inter, imageā‚‚_singleton_left, imageā‚‚_singleton_left', imageā‚‚_singleton_right, imageā‚‚_subset, imageā‚‚_subset_iff, imageā‚‚_subset_iff_left, imageā‚‚_subset_iff_right, imageā‚‚_subset_left, imageā‚‚_subset_right, imageā‚‚_swap, imageā‚‚_union_inter_subset, imageā‚‚_union_inter_subset_union, imageā‚‚_union_left, imageā‚‚_union_right, inf'_imageā‚‚_left, inf'_imageā‚‚_right, inf_imageā‚‚_left, inf_imageā‚‚_right, le_inf'_imageā‚‚, le_inf_imageā‚‚, mem_imageā‚‚, mem_imageā‚‚_iff, mem_imageā‚‚_of_mem, subset_set_imageā‚‚, sup'_imageā‚‚_le, sup'_imageā‚‚_left, sup'_imageā‚‚_right, sup_imageā‚‚_le, sup_imageā‚‚_left, sup_imageā‚‚_right, piFinset_imageā‚‚, toFinset_image2, toFinset_image2
96
Total97

Finset

Definitions

NameCategoryTheorems
imageā‚‚ šŸ“–CompOp
90 mathmath: image_imageā‚‚, imageā‚‚_inter_singleton, imageā‚‚_curry, image_uncurry_product, biUnion_image_left, imageā‚‚_inter_right, card_imageā‚‚, image_imageā‚‚_antidistrib_right, imageā‚‚_left_identity, imageā‚‚_eq_empty_iff, imageā‚‚_subset_iff_right, imageā‚‚_congr, card_imageā‚‚_singleton_left, card_imageā‚‚_le, image_vsub_product, le_inf_imageā‚‚, imageā‚‚_insert_left, imageā‚‚_subset_iff, imageā‚‚_empty_right, imageā‚‚_def, imageā‚‚_inter_union_subset, imageā‚‚_image_left, Set.toFinset_image2, image_imageā‚‚_distrib_right, exists_mem_imageā‚‚, card_imageā‚‚_singleton_right, card_dvd_card_imageā‚‚_left, imageā‚‚_swap, mem_imageā‚‚, inf_imageā‚‚_left, mem_imageā‚‚_of_mem, imageā‚‚_union_inter_subset_union, imageā‚‚_comm, imageā‚‚_empty_left, imageā‚‚_subset_right, imageā‚‚_inter_union_subset_union, imageā‚‚_distrib_subset_right, imageā‚‚_union_left, imageā‚‚_inter_subset_right, image_subset_imageā‚‚_left, Nonempty.imageā‚‚, imageā‚‚_image_left_anticomm, imageā‚‚_distrib_subset_left, Fintype.piFinset_imageā‚‚, image_imageā‚‚_antidistrib, imageā‚‚_singleton_left, imageā‚‚_left_comm, imageā‚‚_inter_subset_left, imageā‚‚_union_inter_subset, card_dvd_card_imageā‚‚_right, imageā‚‚_imageā‚‚_imageā‚‚_comm, biUnion_image_right, imageā‚‚_subset_iff_left, imageā‚‚_image_left_comm, imageā‚‚_inter_left, imageā‚‚_right_comm, subset_set_imageā‚‚, imageā‚‚_left, card_le_card_imageā‚‚_right, imageā‚‚_singleton_left', imageā‚‚_singleton_right, imageā‚‚_subset, image_subset_imageā‚‚_right, card_imageā‚‚_iff, imageā‚‚_mk_eq_product, imageā‚‚_subset_left, inf_imageā‚‚_right, mem_imageā‚‚_iff, imageā‚‚_insert_right, card_le_card_imageā‚‚_left, imageā‚‚_assoc, imageā‚‚_congr', imageā‚‚_right, sup_imageā‚‚_le, imageā‚‚_nonempty_iff, imageā‚‚_union_right, image_imageā‚‚_right_comm, sup_imageā‚‚_right, imageā‚‚_right_identity, Set.Finite.toFinset_image2, coe_imageā‚‚, image_imageā‚‚_right_anticomm, image_imageā‚‚_distrib_left, imageā‚‚_singleton_inter, image_imageā‚‚_antidistrib_left, image_imageā‚‚_distrib, imageā‚‚_singleton, vsub_def, imageā‚‚_image_right, sup_imageā‚‚_left

Theorems

NameKindAssumesProvesValidatesDepends On
biUnion_image_left šŸ“–mathematical—biUnion
image
imageā‚‚
—coe_injective
coe_biUnion
Set.iUnion_congr_Prop
coe_image
coe_imageā‚‚
Set.iUnion_image_left
biUnion_image_right šŸ“–mathematical—biUnion
image
imageā‚‚
—coe_injective
coe_biUnion
Set.iUnion_congr_Prop
coe_image
coe_imageā‚‚
Set.iUnion_image_right
card_dvd_card_imageā‚‚_left šŸ“–mathematicalSet.PairwiseDisjoint
Finset
partialOrder
instOrderBot
Set.image
image
SetLike.coe
instSetLike
card
imageā‚‚
—imageā‚‚_swap
card_dvd_card_imageā‚‚_right
card_dvd_card_imageā‚‚_right šŸ“–mathematicalSet.PairwiseDisjoint
Finset
partialOrder
instOrderBot
Set.image
image
SetLike.coe
instSetLike
card
imageā‚‚
—induction
imageā‚‚_empty_left
imageā‚‚_insert_left
card_union_of_disjoint
Eq.dvd
card_image_of_injective
mem_insert_self
forall_of_forall_insert
Set.PairwiseDisjoint.subset
Set.image_mono
coe_subset
subset_insert
union_eq_right
Eq.trans_subset
Set.Pairwise.eq
Set.mem_image_of_mem
mem_insert_of_mem
image_subset_imageā‚‚_right
card_imageā‚‚ šŸ“–mathematicalFunction.Injective2card
imageā‚‚
—card_image_of_injective
Function.Injective2.uncurry
card_product
card_imageā‚‚_iff šŸ“–mathematical—card
imageā‚‚
Set.InjOn
SProd.sprod
Set
Set.instSProd
SetLike.coe
Finset
instSetLike
—card_product
coe_product
card_image_iff
card_imageā‚‚_le šŸ“–mathematical—card
imageā‚‚
—LE.le.trans_eq
card_image_le
card_product
card_imageā‚‚_singleton_left šŸ“–mathematical—card
imageā‚‚
Finset
instSingleton
—imageā‚‚_singleton_left
card_image_of_injective
card_imageā‚‚_singleton_right šŸ“–mathematical—card
imageā‚‚
Finset
instSingleton
—imageā‚‚_singleton_right
card_image_of_injective
card_le_card_imageā‚‚_left šŸ“–mathematicalFinset
instMembership
card
imageā‚‚
—card_le_card_of_injOn
mem_imageā‚‚_of_mem
Function.Injective.injOn
card_le_card_imageā‚‚_right šŸ“–mathematicalFinset
instMembership
card
imageā‚‚
—card_le_card_of_injOn
mem_imageā‚‚_of_mem
Function.Injective.injOn
coe_imageā‚‚ šŸ“–mathematical—SetLike.coe
Finset
instSetLike
imageā‚‚
Set.image2
—Set.ext
mem_imageā‚‚
exists_mem_imageā‚‚ šŸ“–mathematical—Finset
instMembership
imageā‚‚
—coe_imageā‚‚
forall_mem_imageā‚‚ šŸ“–ā€”ā€”ā€”ā€”coe_imageā‚‚
image_imageā‚‚ šŸ“–mathematical—image
imageā‚‚
—coe_injective
coe_image
coe_imageā‚‚
Set.image_image2
image_imageā‚‚_antidistrib šŸ“–mathematical—image
imageā‚‚
—imageā‚‚_swap
image_imageā‚‚_distrib
image_imageā‚‚_antidistrib_left šŸ“–mathematical—image
imageā‚‚
—coe_injective
coe_image
coe_imageā‚‚
Set.image_image2_antidistrib_left
image_imageā‚‚_antidistrib_right šŸ“–mathematical—image
imageā‚‚
—coe_injective
coe_image
coe_imageā‚‚
Set.image_image2_antidistrib_right
image_imageā‚‚_distrib šŸ“–mathematical—image
imageā‚‚
—coe_injective
coe_image
coe_imageā‚‚
Set.image_image2_distrib
image_imageā‚‚_distrib_left šŸ“–mathematical—image
imageā‚‚
—coe_injective
coe_image
coe_imageā‚‚
Set.image_image2_distrib_left
image_imageā‚‚_distrib_right šŸ“–mathematical—image
imageā‚‚
—coe_injective
coe_image
coe_imageā‚‚
Set.image_image2_distrib_right
image_imageā‚‚_right_anticomm šŸ“–mathematical—imageā‚‚
image
—image_imageā‚‚_antidistrib_right
image_imageā‚‚_right_comm šŸ“–mathematical—imageā‚‚
image
—image_imageā‚‚_distrib_right
image_subset_imageā‚‚_left šŸ“–mathematicalFinset
instMembership
instHasSubset
image
imageā‚‚
—image_subset_iff
mem_imageā‚‚_of_mem
image_subset_imageā‚‚_right šŸ“–mathematicalFinset
instMembership
instHasSubset
image
imageā‚‚
—image_subset_iff
mem_imageā‚‚_of_mem
image_uncurry_product šŸ“–mathematical—image
SProd.sprod
Finset
instSProd
imageā‚‚
——
imageā‚‚_assoc šŸ“–mathematical—image₂—coe_injective
coe_imageā‚‚
Set.image2_assoc
imageā‚‚_comm šŸ“–mathematical—image₂—imageā‚‚_swap
imageā‚‚_congr šŸ“–mathematical—image₂—coe_injective
coe_imageā‚‚
Set.image2_congr
imageā‚‚_congr' šŸ“–mathematical—image₂—imageā‚‚_congr
imageā‚‚_curry šŸ“–mathematical—imageā‚‚
image
SProd.sprod
Finset
instSProd
——
imageā‚‚_distrib_subset_left šŸ“–mathematical—Finset
instHasSubset
imageā‚‚
—coe_subset
coe_imageā‚‚
Set.image2_distrib_subset_left
imageā‚‚_distrib_subset_right šŸ“–mathematical—Finset
instHasSubset
imageā‚‚
—coe_subset
coe_imageā‚‚
Set.image2_distrib_subset_right
imageā‚‚_empty_left šŸ“–mathematical—imageā‚‚
Finset
instEmptyCollection
—coe_injective
coe_imageā‚‚
coe_empty
Set.image2_empty_left
imageā‚‚_empty_right šŸ“–mathematical—imageā‚‚
Finset
instEmptyCollection
—coe_injective
coe_imageā‚‚
coe_empty
Set.image2_empty_right
imageā‚‚_eq_empty_iff šŸ“–mathematical—imageā‚‚
Finset
instEmptyCollection
—Mathlib.Tactic.Contrapose.contrapose_iff₁
imageā‚‚_nonempty_iff
imageā‚‚_image_left šŸ“–mathematical—imageā‚‚
image
—coe_injective
coe_imageā‚‚
coe_image
Set.image2_image_left
imageā‚‚_image_left_anticomm šŸ“–mathematical—imageā‚‚
image
—image_imageā‚‚_antidistrib_left
imageā‚‚_image_left_comm šŸ“–mathematical—imageā‚‚
image
—image_imageā‚‚_distrib_left
imageā‚‚_image_right šŸ“–mathematical—imageā‚‚
image
—coe_injective
coe_imageā‚‚
coe_image
Set.image2_image_right
imageā‚‚_imageā‚‚_imageā‚‚_comm šŸ“–mathematical—image₂—coe_injective
coe_imageā‚‚
Set.image2_image2_image2_comm
imageā‚‚_insert_left šŸ“–mathematical—imageā‚‚
Finset
instInsert
instUnion
image
—coe_injective
coe_imageā‚‚
coe_insert
coe_union
coe_image
Set.image2_insert_left
imageā‚‚_insert_right šŸ“–mathematical—imageā‚‚
Finset
instInsert
instUnion
image
—coe_injective
coe_imageā‚‚
coe_insert
coe_union
coe_image
Set.image2_insert_right
imageā‚‚_inter_left šŸ“–mathematicalFunction.Injective2imageā‚‚
Finset
instInter
—coe_injective
coe_imageā‚‚
coe_inter
Set.image2_inter_left
imageā‚‚_inter_right šŸ“–mathematicalFunction.Injective2imageā‚‚
Finset
instInter
—coe_injective
coe_imageā‚‚
coe_inter
Set.image2_inter_right
imageā‚‚_inter_singleton šŸ“–mathematical—imageā‚‚
Finset
instInter
instSingleton
—imageā‚‚_singleton_right
image_inter
imageā‚‚_inter_subset_left šŸ“–mathematical—Finset
instHasSubset
imageā‚‚
instInter
—coe_subset
coe_imageā‚‚
coe_inter
Set.image2_inter_subset_left
imageā‚‚_inter_subset_right šŸ“–mathematical—Finset
instHasSubset
imageā‚‚
instInter
—coe_subset
coe_imageā‚‚
coe_inter
Set.image2_inter_subset_right
imageā‚‚_inter_union_subset šŸ“–mathematical—Finset
instHasSubset
imageā‚‚
instInter
instUnion
—coe_subset
coe_imageā‚‚
coe_inter
coe_union
Set.image2_inter_union_subset
imageā‚‚_inter_union_subset_union šŸ“–mathematical—Finset
instHasSubset
imageā‚‚
instInter
instUnion
—coe_subset
coe_imageā‚‚
coe_inter
coe_union
Set.image2_inter_union_subset_union
imageā‚‚_left šŸ“–mathematicalNonemptyimage₂—coe_injective
coe_imageā‚‚
Set.image2_left
imageā‚‚_left_comm šŸ“–mathematical—image₂—coe_injective
coe_imageā‚‚
Set.image2_left_comm
imageā‚‚_left_identity šŸ“–mathematical—imageā‚‚
Finset
instSingleton
—coe_injective
coe_imageā‚‚
coe_singleton
Set.image2_left_identity
imageā‚‚_mk_eq_product šŸ“–mathematical—imageā‚‚
SProd.sprod
Finset
instSProd
—ext
imageā‚‚_nonempty_iff šŸ“–mathematical—Nonempty
imageā‚‚
—coe_nonempty
coe_imageā‚‚
Set.image2_nonempty_iff
imageā‚‚_right šŸ“–mathematicalNonemptyimage₂—coe_injective
coe_imageā‚‚
Set.image2_right
imageā‚‚_right_comm šŸ“–mathematical—image₂—coe_injective
coe_imageā‚‚
Set.image2_right_comm
imageā‚‚_right_identity šŸ“–mathematical—imageā‚‚
Finset
instSingleton
—imageā‚‚_singleton_right
image_id'
imageā‚‚_singleton šŸ“–mathematical—imageā‚‚
Finset
instSingleton
—imageā‚‚_singleton_right
image_singleton
imageā‚‚_singleton_inter šŸ“–mathematical—imageā‚‚
Finset
instSingleton
instInter
—imageā‚‚_singleton_left
image_inter
imageā‚‚_singleton_left šŸ“–mathematical—imageā‚‚
Finset
instSingleton
image
—ext
imageā‚‚_singleton_left' šŸ“–mathematical—imageā‚‚
Finset
instSingleton
image
—imageā‚‚_singleton_left
imageā‚‚_singleton_right šŸ“–mathematical—imageā‚‚
Finset
instSingleton
image
—ext
imageā‚‚_subset šŸ“–mathematicalFinset
instHasSubset
image₂—coe_subset
coe_imageā‚‚
Set.image2_subset
imageā‚‚_subset_iff šŸ“–mathematical—Finset
instHasSubset
imageā‚‚
instMembership
—forall_mem_imageā‚‚
imageā‚‚_subset_iff_left šŸ“–mathematical—Finset
instHasSubset
imageā‚‚
image
——
imageā‚‚_subset_iff_right šŸ“–mathematical—Finset
instHasSubset
imageā‚‚
image
—forallā‚‚_swap
imageā‚‚_subset_left šŸ“–mathematicalFinset
instHasSubset
image₂—imageā‚‚_subset
Subset.rfl
imageā‚‚_subset_right šŸ“–mathematicalFinset
instHasSubset
image₂—imageā‚‚_subset
Subset.rfl
imageā‚‚_swap šŸ“–mathematical—image₂—coe_injective
coe_imageā‚‚
Set.image2_swap
imageā‚‚_union_inter_subset šŸ“–mathematical—Finset
instHasSubset
imageā‚‚
instUnion
instInter
—coe_subset
coe_imageā‚‚
coe_union
coe_inter
Set.image2_union_inter_subset
imageā‚‚_union_inter_subset_union šŸ“–mathematical—Finset
instHasSubset
imageā‚‚
instUnion
instInter
—coe_subset
coe_imageā‚‚
coe_union
coe_inter
Set.image2_union_inter_subset_union
imageā‚‚_union_left šŸ“–mathematical—imageā‚‚
Finset
instUnion
—coe_injective
coe_imageā‚‚
coe_union
Set.image2_union_left
imageā‚‚_union_right šŸ“–mathematical—imageā‚‚
Finset
instUnion
—coe_injective
coe_imageā‚‚
coe_union
Set.image2_union_right
inf'_imageā‚‚_left šŸ“–mathematicalNonempty
imageā‚‚
inf'
Nonempty.of_imageā‚‚_left
Nonempty.of_imageā‚‚_right
—sup'_imageā‚‚_left
inf'_imageā‚‚_right šŸ“–mathematicalNonempty
imageā‚‚
inf'
Nonempty.of_imageā‚‚_right
Nonempty.of_imageā‚‚_left
—sup'_imageā‚‚_right
inf_imageā‚‚_left šŸ“–mathematical—inf
imageā‚‚
—sup_imageā‚‚_left
inf_imageā‚‚_right šŸ“–mathematical—inf
imageā‚‚
—sup_imageā‚‚_right
le_inf'_imageā‚‚ šŸ“–mathematicalNonempty
imageā‚‚
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
inf'
—le_inf'_iff
forall_mem_imageā‚‚
le_inf_imageā‚‚ šŸ“–mathematical—Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
inf
imageā‚‚
—sup_imageā‚‚_le
mem_imageā‚‚ šŸ“–mathematical—Finset
instMembership
imageā‚‚
——
mem_imageā‚‚_iff šŸ“–mathematicalFunction.Injective2Finset
instMembership
imageā‚‚
—mem_coe
coe_imageā‚‚
Set.mem_image2_iff
mem_imageā‚‚_of_mem šŸ“–mathematicalFinset
instMembership
image₂—mem_imageā‚‚
subset_set_imageā‚‚ šŸ“–mathematicalSet
Set.instHasSubset
SetLike.coe
Finset
instSetLike
Set.image2
instHasSubset
imageā‚‚
—subset_set_image_iff
Set.image_prod
coe_image
imageā‚‚_image_right
imageā‚‚_image_left
mem_imageā‚‚_of_mem
sup'_imageā‚‚_le šŸ“–mathematicalNonempty
imageā‚‚
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
sup'
—sup'_le_iff
forall_mem_imageā‚‚
sup'_imageā‚‚_left šŸ“–mathematicalNonempty
imageā‚‚
sup'
Nonempty.of_imageā‚‚_left
Nonempty.of_imageā‚‚_right
—Nonempty.of_imageā‚‚_left
Nonempty.of_imageā‚‚_right
Nonempty.fst
Nonempty.of_image
Nonempty.snd
sup'_image
sup'_product_left
sup'_imageā‚‚_right šŸ“–mathematicalNonempty
imageā‚‚
sup'
Nonempty.of_imageā‚‚_right
Nonempty.of_imageā‚‚_left
—Nonempty.of_imageā‚‚_right
Nonempty.of_imageā‚‚_left
Nonempty.snd
Nonempty.of_image
Nonempty.fst
sup'_image
sup'_product_right
sup_imageā‚‚_le šŸ“–mathematical—Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
sup
imageā‚‚
—sup_le_iff
forall_mem_imageā‚‚
sup_imageā‚‚_left šŸ“–mathematical—sup
imageā‚‚
—sup_image
sup_product_left
sup_imageā‚‚_right šŸ“–mathematical—sup
imageā‚‚
—sup_image
sup_product_right

Finset.Nonempty

Theorems

NameKindAssumesProvesValidatesDepends On
imageā‚‚ šŸ“–mathematicalFinset.NonemptyFinset.image₂—Finset.imageā‚‚_nonempty_iff
of_imageā‚‚_left šŸ“–ā€”Finset.Nonempty
Finset.imageā‚‚
——Finset.imageā‚‚_nonempty_iff
of_imageā‚‚_right šŸ“–ā€”Finset.Nonempty
Finset.imageā‚‚
——Finset.imageā‚‚_nonempty_iff

Fintype

Theorems

NameKindAssumesProvesValidatesDepends On
piFinset_imageā‚‚ šŸ“–mathematical—piFinset
Finset.imageā‚‚
decidablePiFintype
—Finset.ext

Set

Theorems

NameKindAssumesProvesValidatesDepends On
toFinset_image2 šŸ“–mathematical—toFinset
image2
Finset.imageā‚‚
—Finset.coe_injective
coe_toFinset
Finset.coe_imageā‚‚

Set.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
toFinset_image2 šŸ“–mathematical—toFinset
Set.image2
Finset.imageā‚‚
—Finset.coe_injective
coe_toFinset
Finset.coe_imageā‚‚

---

← Back to Index