Documentation Verification Report

Powerset

πŸ“ Source: Mathlib/Data/Finset/Powerset.lean

Statistics

MetricCount
DefinitionsdecidableExistsOfDecidableSSubsets, decidableExistsOfDecidableSSubsets', decidableExistsOfDecidableSubsets, decidableExistsOfDecidableSubsets', decidableForallOfDecidableSSubsets, decidableForallOfDecidableSSubsets', decidableForallOfDecidableSubsets, decidableForallOfDecidableSubsets', powerset, powersetCard, ssubsets
11
Theoremscard_powerset, card_powersetCard, coe_powerset, empty_mem_powerset, empty_mem_ssubsets, image_injOn_powerset_of_injOn, image_surjOn_powerset, map_val_val_powersetCard, mem_powerset, mem_powersetCard, mem_powerset_self, mem_ssubsets, notMem_of_mem_powerset_of_notMem, pairwiseDisjoint_pair_insert, pairwise_disjoint_powersetCard, powersetCard_card_add, powersetCard_empty_subsingleton, powersetCard_eq_empty, powersetCard_eq_filter, powersetCard_map, powersetCard_mono, powersetCard_nonempty, powersetCard_nonempty_of_le, powersetCard_one, powersetCard_self, powersetCard_succ_insert, powersetCard_sup, powersetCard_zero, powerset_card_biUnion, powerset_card_disjiUnion, powerset_empty, powerset_eq_singleton_empty, powerset_image, powerset_inj, powerset_injective, powerset_insert, powerset_mono, powerset_nonempty
38
Total49

Finset

Definitions

NameCategoryTheorems
decidableExistsOfDecidableSSubsets πŸ“–CompOpβ€”
decidableExistsOfDecidableSSubsets' πŸ“–CompOpβ€”
decidableExistsOfDecidableSubsets πŸ“–CompOpβ€”
decidableExistsOfDecidableSubsets' πŸ“–CompOpβ€”
decidableForallOfDecidableSSubsets πŸ“–CompOpβ€”
decidableForallOfDecidableSSubsets' πŸ“–CompOpβ€”
decidableForallOfDecidableSubsets πŸ“–CompOpβ€”
decidableForallOfDecidableSubsets' πŸ“–CompOpβ€”
powerset πŸ“–CompOp
60 mathmath: Nat.smoothNumbersUpTo_subset_image, powerset_eq_singleton_empty, Icc_eq_image_powerset, prod_add, powerset_insert, inclusion_exclusion_card_inf_compl, coe_powerset, Nat.eq_prod_primes_mul_sq_of_mem_smoothNumbers, prod_sub, image_surjOn_powerset, powerset_sups_powerset_self, powerset_infs_powerset_self, ContinuousMultilinearMap.map_piecewise_add, powerset_card_biUnion, inclusion_exclusion_sum_inf_compl, powerset_inj, powersetCard_eq_filter, Filter.tendsto_finset_powerset_atTop_atTop, prod_one_add, powerset_image, mem_powerset, inclusion_exclusion_card_biUnion, MeasureTheory.integral_biUnion_eq_sum_powerset, powerset_nonempty, Iic_eq_powerset, Nat.sum_divisors_filter_squarefree, image_injOn_powerset_of_injOn, powerset_injective, empty_mem_powerset, MultilinearMap.map_piecewise_add, sum_powerset_neg_one_pow_card_of_nonempty, sum_pow_mul_eq_add_pow, sum_powerset_insert, prod_powerset, sum_powerset, powerset_inter, prod_powerset_cons, filter_subset_univ, inclusion_exclusion_sum_biUnion, ContinuousAlternatingMap.map_piecewise_add, shatters_iff, powerset_card_disjiUnion, Ioc_eq_filter_powerset, powerset_empty, sum_powerset_neg_one_pow_card, powerset_mono, sum_powerset_apply_card, powerset_union, Nat.divisors_filter_squarefree, MeasureTheory.measureReal_biUnion_eq_sum_powerset, sum_powerset_cons, indicator_biUnion_eq_sum_powerset, powerset_univ, pairwiseDisjoint_pair_insert, mem_powerset_self, prod_powerset_insert, Icc_eq_filter_powerset, prod_add_one, card_powerset, powerset_eq_univ
powersetCard πŸ“–CompOp
39 mathmath: Lagrange.eval_iterate_derivative_eq_sum, map_val_val_powersetCard, powersetCard_mono, prod_powersetCard, Set.Sized.subset_powersetCard_univ, powersetCard_card_add, powerset_card_biUnion, subset_powersetCard_univ_iff, powersetCard_map, powersetCard_eq_filter, prod_X_add_C_coeff, Set.powersetCard.coe_finset, Lagrange.iterate_derivative_interpolate, MvPolynomial.support_esymm', mem_powersetCard, Polynomial.iterate_derivative_prod_X_sub_C, prod_powerset, sum_powerset, mem_powersetCard_univ, powersetCard_sup, MvPolynomial.esymm_eq_sum_monomial, powersetCard_nonempty, esymm_map_val, powersetCard_zero, MvPolynomial.support_esymm'', powerset_card_disjiUnion, card_powersetCard, sum_powersetCard, IsNonarchimedean.finset_powerset_image_add, powersetCard_eq_empty, MvPolynomial.support_esymm, powersetCard_succ_insert, powersetCard_one, univ_filter_card_eq, Set.sized_powersetCard, powersetCard_nonempty_of_le, pairwise_disjoint_powersetCard, powersetCard_empty_subsingleton, powersetCard_self
ssubsets πŸ“–CompOp
6 mathmath: Ioo_eq_filter_ssubsets, Ico_eq_filter_ssubsets, Ico_eq_image_ssubsets, mem_ssubsets, empty_mem_ssubsets, Iio_eq_ssubsets

Theorems

NameKindAssumesProvesValidatesDepends On
card_powerset πŸ“–mathematicalβ€”card
Finset
powerset
Monoid.toNatPow
Nat.instMonoid
β€”Multiset.card_pmap
Multiset.card_powerset
card_powersetCard πŸ“–mathematicalβ€”card
Finset
powersetCard
Nat.choose
β€”Multiset.card_pmap
Multiset.card_powersetCard
coe_powerset πŸ“–mathematicalβ€”SetLike.coe
Finset
instSetLike
powerset
Set.preimage
Set
Set.powerset
β€”Set.ext
instIsConcreteLE
empty_mem_powerset πŸ“–mathematicalβ€”Finset
instMembership
powerset
instEmptyCollection
β€”β€”
empty_mem_ssubsets πŸ“–mathematicalNonemptyFinset
instMembership
ssubsets
instEmptyCollection
β€”mem_ssubsets
ssubset_iff_subset_ne
empty_subset
Nonempty.ne_empty
image_injOn_powerset_of_injOn πŸ“–mathematicalSet.InjOn
SetLike.coe
Finset
instSetLike
image
powerset
β€”β€”
image_surjOn_powerset πŸ“–mathematicalβ€”Set.SurjOn
Finset
image
SetLike.coe
instSetLike
powerset
β€”β€”
map_val_val_powersetCard πŸ“–mathematicalβ€”Multiset.map
Finset
Multiset
val
powersetCard
Multiset.powersetCard
β€”Multiset.map_pmap
Multiset.pmap_eq_map
Multiset.map_id'
mem_powerset πŸ“–mathematicalβ€”Finset
instMembership
powerset
instHasSubset
β€”β€”
mem_powersetCard πŸ“–mathematicalβ€”Finset
instMembership
powersetCard
instHasSubset
card
β€”val_le_iff
mem_powerset_self πŸ“–mathematicalβ€”Finset
instMembership
powerset
β€”instReflSubset
mem_ssubsets πŸ“–mathematicalβ€”Finset
instMembership
ssubsets
instHasSSubset
β€”ssubsets.eq_1
mem_erase
mem_powerset
ssubset_iff_subset_ne
notMem_of_mem_powerset_of_notMem πŸ“–β€”Finset
instMembership
powerset
β€”β€”mem_powerset
pairwiseDisjoint_pair_insert πŸ“–mathematicalFinset
instMembership
Set.PairwiseDisjoint
Set
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
instSetLike
powerset
Set.instInsert
Set.instSingletonSet
instInsert
β€”notMem_mono
mem_insert_self
Set.LeftInvOn.injOn
insert_erase_invOn
pairwise_disjoint_powersetCard πŸ“–mathematicalβ€”Pairwise
Disjoint
Finset
partialOrder
instOrderBot
powersetCard
β€”disjoint_left
mem_powersetCard
powersetCard_card_add πŸ“–mathematicalβ€”powersetCard
card
Finset
instEmptyCollection
β€”β€”
powersetCard_empty_subsingleton πŸ“–mathematicalβ€”Set.Subsingleton
Finset
SetLike.coe
instSetLike
powersetCard
instEmptyCollection
β€”β€”
powersetCard_eq_empty πŸ“–mathematicalβ€”powersetCard
Finset
instEmptyCollection
card
β€”Mathlib.Tactic.Contrapose.contrapose₁
exists_subset_card_eq
card_eq_zero
card_powersetCard
Nat.choose_eq_zero_of_lt
powersetCard_eq_filter πŸ“–mathematicalβ€”powersetCard
filter
Finset
card
powerset
β€”ext
powersetCard_map πŸ“–mathematicalβ€”powersetCard
map
Finset
RelEmbedding.toEmbedding
Preorder.toLE
PartialOrder.toPreorder
partialOrder
mapEmbedding
β€”ext
card_map
powersetCard_mono πŸ“–mathematicalFinset
instHasSubset
powersetCardβ€”mem_powersetCard
Subset.trans
powersetCard_nonempty πŸ“–mathematicalβ€”Nonempty
Finset
powersetCard
card
β€”β€”
powersetCard_nonempty_of_le πŸ“–mathematicalcardNonempty
Finset
powersetCard
β€”powersetCard_nonempty
powersetCard_one πŸ“–mathematicalβ€”powersetCard
map
Finset
instSingleton
singleton_injective
β€”eq_of_veq
singleton_injective
Multiset.map_injective
val_injective
map_val_val_powersetCard
Multiset.powersetCard_one
Multiset.map_congr
Multiset.map_map
powersetCard_self πŸ“–mathematicalβ€”powersetCard
card
Finset
instSingleton
β€”ext
mem_powersetCard
mem_singleton
eq_of_subset_of_card_le
Eq.ge
instReflSubset
powersetCard_succ_insert πŸ“–mathematicalFinset
instMembership
powersetCard
instInsert
instUnion
decidableEq
image
β€”powersetCard_eq_filter
powerset_insert
filter_union
powersetCard_sup πŸ“–mathematicalcardsup
Finset
Lattice.toSemilatticeSup
instLattice
instOrderBot
powersetCard
β€”le_antisymm
sup_eq_biUnion
le_iff_subset
subset_iff
powersetCard_nonempty
le_trans
pred_card_le_card_erase
insert_erase
powersetCard_succ_insert
notMem_erase
mem_union_right
mem_image_of_mem
mem_insert_self
powersetCard_zero πŸ“–mathematicalβ€”powersetCard
Finset
instSingleton
instEmptyCollection
β€”β€”
powerset_card_biUnion πŸ“–mathematicalβ€”powerset
biUnion
Finset
range
card
powersetCard
β€”Pairwise.set_pairwise
pairwise_disjoint_powersetCard
disjiUnion_eq_biUnion
powerset_card_disjiUnion
powerset_card_disjiUnion πŸ“–mathematicalβ€”powerset
disjiUnion
Finset
range
card
powersetCard
Pairwise.set_pairwise
Disjoint
partialOrder
instOrderBot
pairwise_disjoint_powersetCard
SetLike.coe
instSetLike
β€”ext
Pairwise.set_pairwise
pairwise_disjoint_powersetCard
mem_disjiUnion
mem_range
card_le_card
mem_powerset
mem_powersetCard
powerset_empty πŸ“–mathematicalβ€”powerset
Finset
instEmptyCollection
instSingleton
β€”β€”
powerset_eq_singleton_empty πŸ“–mathematicalβ€”powerset
Finset
instSingleton
instEmptyCollection
β€”powerset_empty
powerset_image πŸ“–mathematicalβ€”powerset
image
Finset
decidableEq
β€”ext
mem_image
powerset_inj πŸ“–mathematicalβ€”powersetβ€”powerset_injective
powerset_injective πŸ“–mathematicalβ€”Finset
powerset
β€”Function.Injective.of_eq_imp_le
powerset_mono
Eq.le
powerset_insert πŸ“–mathematicalβ€”powerset
Finset
instInsert
instUnion
decidableEq
image
β€”ext
powerset_mono πŸ“–mathematicalβ€”Finset
instHasSubset
powerset
β€”mem_powerset
mem_powerset_self
Subset.trans
powerset_nonempty πŸ“–mathematicalβ€”Nonempty
Finset
powerset
β€”empty_mem_powerset

---

← Back to Index