Documentation Verification Report

SMulAntidiagonal

📁 Source: Mathlib/Data/Finset/SMulAntidiagonal.lean

Statistics

MetricCount
DefinitionsSMulAntidiagonal, VAddAntidiagonal
2
TheoremsisPWO_support_smulAntidiagonal, isPWO_support_vaddAntidiagonal, mem_smulAntidiagonal, mem_vaddAntidiagonal, smulAntidiagonal_min_smul_min, smulAntidiagonal_mono_left, smulAntidiagonal_mono_right, support_smulAntidiagonal_subset_smul, support_vaddAntidiagonal_subset_vadd, vaddAntidiagonal_min_vadd_min, vaddAntidiagonal_mono_left, vaddAntidiagonal_mono_right, smul, vadd, min_smul, min_vadd, smul, vadd
18
Total20

Finset

Definitions

NameCategoryTheorems
SMulAntidiagonal 📖CompOp
6 mathmath: smulAntidiagonal_mono_right, support_smulAntidiagonal_subset_smul, isPWO_support_smulAntidiagonal, smulAntidiagonal_min_smul_min, smulAntidiagonal_mono_left, mem_smulAntidiagonal
VAddAntidiagonal 📖CompOp
11 mathmath: vaddAntidiagonal_mono_left, support_vaddAntidiagonal_subset_vadd, mem_vaddAntidiagonal, HahnSeries.SummableFamily.coeff_smul, isPWO_support_vaddAntidiagonal, HahnModule.coeff_smul, HahnSeries.SummableFamily.sum_vAddAntidiagonal_eq, HahnModule.coeff_smul_left, HahnModule.coeff_smul_right, vaddAntidiagonal_mono_right, vaddAntidiagonal_min_vadd_min

Theorems

NameKindAssumesProvesValidatesDepends On
isPWO_support_smulAntidiagonal 📖mathematicalSet.IsPWO
PartialOrder.toPreorder
setOf
Nonempty
SMulAntidiagonal
Set.IsPWO.mono
Set.IsPWO.smul
IsOrderedCancelSMul.toIsOrderedSMul
support_smulAntidiagonal_subset_smul
isPWO_support_vaddAntidiagonal 📖mathematicalSet.IsPWO
PartialOrder.toPreorder
setOf
Nonempty
VAddAntidiagonal
Set.IsPWO.mono
Set.IsPWO.vadd
IsOrderedCancelVAdd.toIsOrderedVAdd
support_vaddAntidiagonal_subset_vadd
mem_smulAntidiagonal 📖mathematicalSet.IsPWO
PartialOrder.toPreorder
Finset
instMembership
SMulAntidiagonal
Set
Set.instMembership
Set.SMulAntidiagonal.finite_of_isPWO
Set.mem_sep_iff
mem_vaddAntidiagonal 📖mathematicalSet.IsPWO
PartialOrder.toPreorder
Finset
instMembership
VAddAntidiagonal
Set
Set.instMembership
HVAdd.hVAdd
instHVAdd
Set.VAddAntidiagonal.finite_of_isPWO
Set.Finite.mem_toFinset
Set.mem_sep_iff
smulAntidiagonal_min_smul_min 📖mathematicalSet.IsWF
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Nonempty
SMulAntidiagonal
Set.IsWF.isPWO
Set.IsWF.min
Finset
instSingleton
ext
Set.IsWF.isPWO
IsCancelSMul.left_cancel
instIsCancelSMulOfIsOrderedCancelSMul
LE.le.eq_of_not_lt
Set.IsWF.min_le
LT.lt.ne'
SMul.smul_lt_smul_of_lt_of_le
Set.IsWF.min_mem
smulAntidiagonal_mono_left 📖mathematicalSet.IsPWO
PartialOrder.toPreorder
Set
Set.instHasSubset
Finset
instHasSubset
SMulAntidiagonal
Set.Finite.toFinset_mono
Set.SMulAntidiagonal.finite_of_isPWO
Set.smulAntidiagonal_mono_left
smulAntidiagonal_mono_right 📖mathematicalSet.IsPWO
PartialOrder.toPreorder
Set
Set.instHasSubset
Finset
instHasSubset
SMulAntidiagonal
Set.Finite.toFinset_mono
Set.SMulAntidiagonal.finite_of_isPWO
Set.smulAntidiagonal_mono_right
support_smulAntidiagonal_subset_smul 📖mathematicalSet.IsPWO
PartialOrder.toPreorder
Set
Set.instHasSubset
setOf
Nonempty
SMulAntidiagonal
Set.smul
Set.mem_smul
mem_smulAntidiagonal
support_vaddAntidiagonal_subset_vadd 📖mathematicalSet.IsPWO
PartialOrder.toPreorder
Set
Set.instHasSubset
setOf
Nonempty
VAddAntidiagonal
HVAdd.hVAdd
instHVAdd
Set.vadd
Set.mem_vadd
mem_vaddAntidiagonal
vaddAntidiagonal_min_vadd_min 📖mathematicalSet.IsWF
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Nonempty
VAddAntidiagonal
Set.IsWF.isPWO
HVAdd.hVAdd
instHVAdd
Set.IsWF.min
Finset
instSingleton
ext
Set.IsWF.isPWO
mem_vaddAntidiagonal
mem_singleton
IsCancelVAdd.left_cancel
instIsCancelVAddOfIsOrderedCancelVAdd
LE.le.eq_of_not_lt
Set.IsWF.min_le
LT.lt.ne'
VAdd.vadd_lt_vadd_of_lt_of_le
Set.IsWF.min_mem
vaddAntidiagonal_mono_left 📖mathematicalSet.IsPWO
PartialOrder.toPreorder
Set
Set.instHasSubset
Finset
instHasSubset
VAddAntidiagonal
Set.Finite.toFinset_mono
Set.VAddAntidiagonal.finite_of_isPWO
Set.vaddAntidiagonal_mono_left
vaddAntidiagonal_mono_right 📖mathematicalSet.IsPWO
PartialOrder.toPreorder
Set
Set.instHasSubset
Finset
instHasSubset
VAddAntidiagonal
Set.Finite.toFinset_mono
Set.VAddAntidiagonal.finite_of_isPWO
Set.vaddAntidiagonal_mono_right

Set.IsPWO

Theorems

NameKindAssumesProvesValidatesDepends On
smul 📖mathematicalSet.IsPWOSet
Set.smul
Set.image_smul_prod
image_of_monotone
prod
Monotone.smul
monotone_fst
monotone_snd
vadd 📖mathematicalSet.IsPWOHVAdd.hVAdd
Set
instHVAdd
Set.vadd
Set.vadd_image_prod
image_of_monotone
prod
Monotone.vadd
monotone_fst
monotone_snd

Set.IsWF

Theorems

NameKindAssumesProvesValidatesDepends On
min_smul 📖mathematicalSet.IsWF
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Nonempty
min
Set
Set.smul
smul
Set.Nonempty.smul
le_antisymm
smul
Set.Nonempty.smul
min_le
Set.mem_smul
min_mem
le_min_iff
IsOrderedSMul.smul_le_smul
min_vadd 📖mathematicalSet.IsWF
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Nonempty
min
HVAdd.hVAdd
Set
instHVAdd
Set.vadd
vadd
Set.Nonempty.vadd
le_antisymm
vadd
Set.Nonempty.vadd
min_le
Set.mem_vadd
min_mem
le_min_iff
IsOrderedVAdd.vadd_le_vadd
smul 📖mathematicalSet.IsWF
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Set.smul
Set.IsPWO.isWF
Set.IsPWO.smul
isPWO
vadd 📖mathematicalSet.IsWF
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
HVAdd.hVAdd
Set
instHVAdd
Set.vadd
Set.IsPWO.isWF
Set.IsPWO.vadd
isPWO

---

← Back to Index