Documentation Verification Report

Slice

πŸ“ Source: Mathlib/Data/Finset/Slice.lean

Statistics

MetricCount
Definitionsslice, Β«term_#_Β», Sized
3
TheoremsbiUnion_slice, eq_of_mem_slice, mem_slice, ne_of_mem_slice, pairwiseDisjoint_slice, sized_slice, slice_subset, subset_powersetCard_univ_iff, sum_card_slice, card_le, empty_mem_iff, isAntichain, mono, subset_powersetCard_univ, subsingleton, subsingleton', univ_mem_iff, union, sized_empty, sized_iUnion, sized_iUnionβ‚‚, sized_powersetCard, sized_singleton, sized_union
24
Total27

Finset

Definitions

NameCategoryTheorems
slice πŸ“–CompOp
12 mathmath: slice_subset, lubell_yamamoto_meshalkin_inequality_sum_card_div_choose, slice_subset_falling, sized_slice, biUnion_slice, sum_card_slice, le_card_falling_div_choose, sum_card_slice_div_choose_le_one, slice_union_shadow_falling_succ, mem_slice, pairwiseDisjoint_slice, IsAntichain.disjoint_slice_shadow_falling
Β«term_#_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
biUnion_slice πŸ“–mathematicalβ€”biUnion
Finset
decidableEq
Iic
Nat.instPreorder
LocallyFiniteOrder.toLocallyFiniteOrderBot
Nat.instOrderBot
Nat.instLocallyFiniteOrder
Fintype.card
slice
β€”Subset.antisymm
biUnion_subset
slice_subset
mem_biUnion
mem_Iic
card_le_univ
mem_slice
eq_of_mem_slice πŸ“–β€”Finset
instMembership
slice
β€”β€”sized_slice
mem_slice πŸ“–mathematicalβ€”Finset
instMembership
slice
card
β€”mem_filter
ne_of_mem_slice πŸ“–β€”Finset
instMembership
slice
β€”β€”sized_slice
pairwiseDisjoint_slice πŸ“–mathematicalβ€”Set.PairwiseDisjoint
Finset
partialOrder
instOrderBot
Set.univ
slice
β€”disjoint_filter
sized_slice πŸ“–mathematicalβ€”Set.Sized
SetLike.coe
Finset
instSetLike
slice
β€”mem_slice
slice_subset πŸ“–mathematicalβ€”Finset
instHasSubset
slice
β€”filter_subset
subset_powersetCard_univ_iff πŸ“–mathematicalβ€”Finset
instHasSubset
powersetCard
univ
Set.Sized
SetLike.coe
instSetLike
β€”mem_powersetCard_univ
mem_coe
sum_card_slice πŸ“–mathematicalβ€”sum
Nat.instAddCommMonoid
Iic
Nat.instPreorder
LocallyFiniteOrder.toLocallyFiniteOrderBot
Nat.instOrderBot
Nat.instLocallyFiniteOrder
Fintype.card
card
Finset
slice
β€”card_biUnion
Set.PairwiseDisjoint.subset
pairwiseDisjoint_slice
Set.subset_univ
biUnion_slice

Set

Definitions

NameCategoryTheorems
Sized πŸ“–MathDef
11 mathmath: Finset.sized_compls, Finset.sized_slice, Finset.subset_powersetCard_univ_iff, sized_iUnionβ‚‚, Finset.sized_shadow_iff, sized_singleton, Finset.sized_falling, sized_iUnion, sized_empty, sized_powersetCard, sized_union

Theorems

NameKindAssumesProvesValidatesDepends On
sized_empty πŸ“–mathematicalβ€”Sized
Set
Finset
instEmptyCollection
β€”instIsEmptyFalse
sized_iUnion πŸ“–mathematicalβ€”Sized
iUnion
Finset
β€”forall_swap
sized_iUnionβ‚‚ πŸ“–mathematicalβ€”Sized
iUnion
Finset
β€”β€”
sized_powersetCard πŸ“–mathematicalβ€”Sized
SetLike.coe
Finset
Finset.instSetLike
Finset.powersetCard
β€”Finset.mem_powersetCard
sized_singleton πŸ“–mathematicalβ€”Sized
Finset
Set
instSingletonSet
Finset.card
β€”β€”
sized_union πŸ“–mathematicalβ€”Sized
Set
Finset
instUnion
β€”Sized.mono
subset_union_left
subset_union_right

Set.Sized

Theorems

NameKindAssumesProvesValidatesDepends On
card_le πŸ“–mathematicalSet.Sized
SetLike.coe
Finset
Finset.instSetLike
Finset.card
Nat.choose
Fintype.card
β€”Fintype.card.eq_1
Finset.card_powersetCard
Finset.card_le_card
Finset.subset_powersetCard_univ_iff
empty_mem_iff πŸ“–mathematicalSet.SizedFinset
Set
Set.instMembership
Finset.instEmptyCollection
Set.instSingletonSet
β€”IsAntichain.bot_mem_iff
isAntichain
isAntichain πŸ“–mathematicalSet.SizedIsAntichain
Finset
Finset.instHasSubset
β€”Finset.eq_of_subset_of_card_le
Eq.le
mono πŸ“–β€”Set
Finset
Set.instHasSubset
Set.Sized
β€”β€”β€”
subset_powersetCard_univ πŸ“–mathematicalSet.Sized
SetLike.coe
Finset
Finset.instSetLike
Finset.instHasSubset
Finset.powersetCard
Finset.univ
β€”Finset.subset_powersetCard_univ_iff
subsingleton πŸ“–mathematicalSet.SizedSet.Subsingleton
Finset
β€”Set.subsingleton_of_forall_eq
Finset.card_eq_zero
subsingleton' πŸ“–mathematicalSet.Sized
Fintype.card
Set.Subsingleton
Finset
β€”Set.subsingleton_of_forall_eq
Finset.card_eq_iff_eq_univ
univ_mem_iff πŸ“–mathematicalSet.SizedFinset
Set
Set.instMembership
Finset.univ
Set.instSingletonSet
β€”IsAntichain.top_mem_iff
isAntichain

Set.sized

Theorems

NameKindAssumesProvesValidatesDepends On
union πŸ“–mathematicalSet.SizedSet
Finset
Set.instUnion
β€”Set.sized_union

---

← Back to Index