Documentation Verification Report

Sym

πŸ“ Source: Mathlib/Data/Finset/Sym.lean

Statistics

MetricCount
Definitionssym, sym2, symInsertEquiv, instFintype
4
Theoremssym, sym2, card_sym2, coe_sym2, diag_mem_sym2_iff, diag_mem_sym2_mem_iff, eq_empty_of_sym_eq_empty, image_diag_union_image_offDiag, injective_sym2, isDiag_mk_of_mem_diag, mem_sym2_iff, mem_sym_iff, mk_mem_sym2_iff, monotone_sym2, not_isDiag_mk_of_mem_offDiag, replicate_mem_sym, strictMono_sym2, sym2_cons, sym2_empty, sym2_eq_empty, sym2_eq_image, sym2_image, sym2_insert, sym2_map, sym2_mono, sym2_nonempty, sym2_singleton, sym2_toFinset, sym2_univ, sym2_val, symInsertEquiv_apply_fst, symInsertEquiv_apply_snd_coe, symInsertEquiv_symm_apply_coe, sym_empty, sym_eq_empty, sym_fill_mem, sym_filterNe_mem, sym_inter, sym_mono, sym_nonempty, sym_singleton, sym_succ, sym_union, sym_univ, sym_zero
45
Total49

Finset

Definitions

NameCategoryTheorems
sym πŸ“–CompOp
23 mathmath: sym_univ, mem_sym_iff, sym_nonempty, map_sym_eq_piAntidiag, DividedPowers.dpow_sum', Nonempty.sym, replicate_mem_sym, sym_union, norm_iteratedFDerivWithin_prod_le, DividedPowers.dpow_sum, sum_pow_of_commute, sym_inter, sym_zero, sym_singleton, sym_eq_empty, norm_iteratedFDeriv_prod_le, symInsertEquiv_apply_snd_coe, symInsertEquiv_apply_fst, sym_empty, symInsertEquiv_symm_apply_coe, sym_succ, sum_pow, sym_mono
sym2 πŸ“–CompOp
37 mathmath: mk_mem_sym2_iff, SimpleGraph.edgeFinset_subset_sym2_of_support_subset, sym2_toFinset, QuadraticMap.map_finsuppSum, card_sym2, mem_sym2_iff, sym2_mono, sym2_map, Finsupp.support_sym2Mul_subset, sym2_empty, QuadraticMap.map_finsuppSum', SimpleGraph.edgeDisjointTriangles_iff_mem_sym2_subsingleton, sym2_nonempty, sym2_cons, Nonempty.sym2, sym2_univ, injective_sym2, diag_mem_sym2_iff, QuadraticMap.map_sum', SimpleGraph.EdgeDisjointTriangles.mem_sym2_subsingleton, image_diag_union_image_offDiag, monotone_sym2, sym2_insert, sym2_eq_empty, coe_sym2, QuadraticMap.apply_linearCombination, sum_sym2_filter_not_isDiag, QuadraticMap.map_sum, QuadraticMap.sum_repr_sq_add_sum_repr_mul_polar, sym2_val, strictMono_sym2, sym2_image, Finsupp.mem_sym2_support_of_mul_ne_zero, SimpleGraph.map_edgeFinset_induce, sym2_eq_image, sym2_singleton, Finsupp.sym2_support_eq_preimage_support_mul
symInsertEquiv πŸ“–CompOp
3 mathmath: symInsertEquiv_apply_snd_coe, symInsertEquiv_apply_fst, symInsertEquiv_symm_apply_coe

Theorems

NameKindAssumesProvesValidatesDepends On
card_sym2 πŸ“–mathematicalβ€”card
Sym2
sym2
Nat.choose
β€”card_def
sym2_val
Multiset.card_sym2
coe_sym2 πŸ“–mathematicalβ€”SetLike.coe
Finset
Sym2
instSetLike
sym2
Set.sym2
β€”Set.ext
Sym2.ind
diag_mem_sym2_iff πŸ“–mathematicalβ€”Sym2
Finset
instMembership
sym2
Sym2.diag
β€”β€”
diag_mem_sym2_mem_iff πŸ“–mathematicalβ€”Finset
instMembership
β€”mem_sym2_iff
mk_mem_sym2_iff
eq_empty_of_sym_eq_empty πŸ“–β€”sym
Finset
Sym
instEmptyCollection
β€”β€”Mathlib.Tactic.Contrapose.contrapose₁
Nonempty.sym
image_diag_union_image_offDiag πŸ“–mathematicalβ€”Finset
Sym2
instUnion
Sym2.instDecidableEq
image
diag
offDiag
sym2
β€”image_union
diag_union_offDiag
sym2_eq_image
injective_sym2 πŸ“–mathematicalβ€”Finset
Sym2
sym2
β€”ext
isDiag_mk_of_mem_diag πŸ“–mathematicalFinset
instMembership
diag
Sym2.IsDiagβ€”β€”
mem_sym2_iff πŸ“–mathematicalβ€”Sym2
Finset
instMembership
sym2
β€”nodup
sym2_val
Multiset.mem_sym2_iff
mem_sym_iff πŸ“–mathematicalβ€”Sym
Finset
instMembership
sym
β€”mem_singleton
notMem_empty
Sym.eq_nil_of_card_zero
mem_sup
mem_image
Sym.mem_cons
Sym.exists_eq_cons_of_succ
Sym.mem_cons_self
mem_image_of_mem
Sym.mem_cons_of_mem
mk_mem_sym2_iff πŸ“–mathematicalβ€”Sym2
Finset
instMembership
sym2
β€”nodup
sym2_val
Multiset.mk_mem_sym2_iff
monotone_sym2 πŸ“–mathematicalβ€”Monotone
Finset
Sym2
PartialOrder.toPreorder
partialOrder
sym2
β€”sym2_mono
not_isDiag_mk_of_mem_offDiag πŸ“–mathematicalFinset
instMembership
offDiag
Sym2.IsDiagβ€”β€”
replicate_mem_sym πŸ“–mathematicalFinset
instMembership
Sym
sym
Sym.replicate
β€”mem_sym_iff
Sym.mem_replicate
strictMono_sym2 πŸ“–mathematicalβ€”StrictMono
Finset
Sym2
PartialOrder.toPreorder
partialOrder
sym2
β€”Monotone.strictMono_of_injective
monotone_sym2
injective_sym2
sym2_cons πŸ“–mathematicalFinset
instMembership
sym2
cons
disjUnion
Sym2
map
Sym2.mkEmbedding
β€”val_injective
Multiset.sym2_cons
sym2_empty πŸ“–mathematicalβ€”sym2
Finset
instEmptyCollection
Sym2
β€”β€”
sym2_eq_empty πŸ“–mathematicalβ€”sym2
Finset
Sym2
instEmptyCollection
β€”val_eq_zero
sym2_val
Multiset.sym2_eq_zero_iff
sym2_eq_image πŸ“–mathematicalβ€”sym2
image
Sym2
Sym2.instDecidableEq
SProd.sprod
Finset
instSProd
β€”ext
sym2_image πŸ“–mathematicalβ€”sym2
image
Sym2
Sym2.instDecidableEq
Sym2.map
β€”val_injective
Multiset.dedup_sym2
Multiset.sym2_map
sym2_insert πŸ“–mathematicalβ€”sym2
Finset
instInsert
Sym2
instUnion
Sym2.instDecidableEq
image
β€”insert_eq_of_mem
image_insert
insert_union
cons_eq_insert
map_eq_image
disjUnion.congr_simp
disjUnion_eq_union
sym2_cons
sym2_map πŸ“–mathematicalβ€”sym2
map
Sym2
Function.Embedding.sym2Map
β€”val_injective
Multiset.sym2_map
sym2_mono πŸ“–mathematicalFinset
instHasSubset
Sym2
sym2
β€”β€”
sym2_nonempty πŸ“–mathematicalβ€”Nonempty
Sym2
sym2
β€”Mathlib.Tactic.Contrapose.contrapose_iff₁
sym2_eq_empty
sym2_singleton πŸ“–mathematicalβ€”sym2
Finset
instSingleton
Sym2
Sym2.diag
β€”β€”
sym2_toFinset πŸ“–mathematicalβ€”sym2
Multiset.toFinset
Sym2
Sym2.instDecidableEq
Multiset.sym2
β€”ext
Sym2.ind
sym2_univ πŸ“–mathematicalβ€”sym2
univ
Sym2
β€”ext
sym2_val πŸ“–mathematicalβ€”val
Sym2
sym2
Multiset.sym2
β€”β€”
symInsertEquiv_apply_fst πŸ“–mathematicalFinset
instMembership
Sym
SetLike.instMembership
instSetLike
sym
DFunLike.coe
Equiv
instInsert
EquivLike.toFunLike
Equiv.instEquivLike
symInsertEquiv
Sym.filterNe
β€”β€”
symInsertEquiv_apply_snd_coe πŸ“–mathematicalFinset
instMembership
Sym
Sym.filterNe
SetLike.instMembership
instSetLike
sym
instInsert
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
symInsertEquiv
β€”β€”
symInsertEquiv_symm_apply_coe πŸ“–mathematicalFinset
instMembership
Sym
SetLike.instMembership
instSetLike
sym
instInsert
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
symInsertEquiv
Sym.fill
β€”β€”
sym_empty πŸ“–mathematicalβ€”sym
Finset
instEmptyCollection
Sym
β€”β€”
sym_eq_empty πŸ“–mathematicalβ€”sym
Finset
Sym
instEmptyCollection
β€”singleton_ne_empty
eq_empty_of_sym_eq_empty
sym_empty
sym_fill_mem πŸ“–mathematicalSym
Finset
instMembership
sym
instInsert
Sym.fill
β€”mem_sym_iff
mem_insert
Sym.mem_fill_iff
sym_filterNe_mem πŸ“–mathematicalSym
Finset
instMembership
sym
Sym.filterNe
erase
β€”mem_sym_iff
mem_erase
Multiset.mem_filter
sym_inter πŸ“–mathematicalβ€”sym
Finset
instInter
Sym
instDecidableEqSym
β€”ext
sym_mono πŸ“–mathematicalFinset
instHasSubset
Sym
sym
β€”mem_sym_iff
sym_nonempty πŸ“–mathematicalβ€”Nonempty
Sym
sym
β€”Mathlib.Tactic.Contrapose.contrapose_iff₁
sym_eq_empty
sym_singleton πŸ“–mathematicalβ€”sym
Finset
instSingleton
Sym
Sym.replicate
β€”eq_singleton_iff_unique_mem
replicate_mem_sym
mem_singleton
Sym.eq_replicate_iff
eq_of_mem_singleton
mem_sym_iff
sym_succ πŸ“–mathematicalβ€”sym
sup
Finset
Sym
Lattice.toSemilatticeSup
instLattice
instDecidableEqSym
instOrderBot
image
Sym.cons
β€”β€”
sym_union πŸ“–mathematicalβ€”Finset
Sym
instHasSubset
instUnion
instDecidableEqSym
sym
β€”union_subset
sym_mono
subset_union_left
subset_union_right
sym_univ πŸ“–mathematicalβ€”sym
univ
Sym
instFintypeSymOfDecidableEq
β€”eq_univ_iff_forall
mem_sym_iff
mem_univ
sym_zero πŸ“–mathematicalβ€”sym
Sym
Finset
instSingleton
Sym.instEmptyCollectionOfNatNat
β€”β€”

Finset.Nonempty

Theorems

NameKindAssumesProvesValidatesDepends On
sym πŸ“–mathematicalFinset.NonemptySym
Finset.sym
β€”Finset.replicate_mem_sym
sym2 πŸ“–mathematicalFinset.NonemptySym2
Finset.sym2
β€”Finset.sym2_nonempty

Sym2

Definitions

NameCategoryTheorems
instFintype πŸ“–CompOp
54 mathmath: SimpleGraph.EdgeDisjointTriangles.card_edgeFinset_le, SimpleGraph.edgeFinset_subset_sym2_of_support_subset, SimpleGraph.two_mul_card_edgeFinset, SimpleGraph.sum_degrees_eq_twice_card_edges, card_subtype_not_diag, SimpleGraph.card_edgeFinset_sup_edge, SimpleGraph.edgeFinset_top, SimpleGraph.map_edgeFinset_induce_of_support_subset, SimpleGraph.extremalNumber_le_iff_of_nonneg, SimpleGraph.card_edgeFinset_map, SimpleGraph.farFromTriangleFree_iff, SimpleGraph.edgeFinset_deleteIncidenceSet_eq_sdiff, SimpleGraph.isBipartiteWith_sum_degrees_eq_card_edges, SimpleGraph.edgeFinset_map, SimpleGraph.card_edgeFinset_of_isExtremal_free, SimpleGraph.isBipartiteWith_sum_degrees_eq_card_edges', SimpleGraph.edgeFinset_replaceVertex_of_adj, SimpleGraph.LocallyLinear.card_edgeFinset, SimpleGraph.card_edgeFinset_le_extremalNumber, SimpleGraph.farFromTriangleFree.le_card_sub_card, SimpleGraph.isExtremal_free_iff, SimpleGraph.card_edgeFinset_turanGraph_add, SimpleGraph.edgeFinset_replaceVertex_of_not_adj, SimpleGraph.extremalNumber_top, SimpleGraph.card_edgeFinset_deleteIncidenceSet_le_extremalNumber, SimpleGraph.card_edgeFinset_top_eq_card_choose_two, SimpleGraph.dart_card_eq_twice_card_edges, SimpleGraph.extremalNumber_of_fintypeCard_eq, SimpleGraph.edgeFinset_deleteIncidenceSet_eq_filter, SimpleGraph.card_edgeFinset_replaceVertex_of_not_adj, card_diagSet_compl, SimpleGraph.card_edgeFinset_replaceVertex_of_adj, SimpleGraph.sum_degrees_support_eq_twice_card_edges, SimpleGraph.extremalNumber_le_iff, SimpleGraph.card_edgeFinset_deleteIncidenceSet, SimpleGraph.lt_extremalNumber_iff, SimpleGraph.lt_extremalNumber_iff_of_nonneg, SimpleGraph.disjoint_sdiff_neighborFinset_image, SimpleGraph.regularityReduced_edges_card_aux, SimpleGraph.triangle_removal, card_subtype_diag, SimpleGraph.card_edgeFinset_turanGraph, SimpleGraph.card_edgeFinset_induce_support, SimpleGraph.card_edgeFinset_completeEquipartiteGraph, SimpleGraph.edgeFinset_sup_edge, SimpleGraph.CliqueFree.card_edgeFinset_le, card, SimpleGraph.card_edgeFinset_eq_extremalNumber_top_iff_nonempty_iso_turanGraph, SimpleGraph.card_edgeFinset_induce_of_support_subset, SimpleGraph.map_edgeFinset_induce, SimpleGraph.card_topEdgeLabeling, SimpleGraph.mul_card_edgeFinset_turanGraph_le, SimpleGraph.isBipartiteWith_sum_degrees_eq_twice_card_edges, SimpleGraph.card_edgeFinset_induce_compl_singleton

---

← Back to Index