Documentation Verification Report

Union

πŸ“ Source: Mathlib/Data/Finset/Union.lean

Statistics

MetricCount
DefinitionsbiUnion, disjiUnion
2
TheoremsbiUnion, biUnion_biUnion, biUnion_congr, biUnion_empty, biUnion_filter_eq_of_maps_to, biUnion_image, biUnion_insert, biUnion_inter, biUnion_mono, biUnion_nonempty, biUnion_singleton, biUnion_singleton_eq_self, biUnion_subset, biUnion_subset_biUnion_of_subset_left, biUnion_subset_iff_forall_subset, biUnion_union, biUnion_val, bind_toFinset, coe_biUnion, coe_disjiUnion, disjiUnion_cons, disjiUnion_disjUnion, disjiUnion_disjiUnion, disjiUnion_empty, disjiUnion_eq_biUnion, disjiUnion_filter_eq, disjiUnion_filter_eq_of_maps_to, disjiUnion_map, disjiUnion_singleton, disjiUnion_singleton_eq_self, disjiUnion_val, disjoint_biUnion_left, disjoint_biUnion_right, disjoint_disjiUnion_left, disjoint_disjiUnion_right, erase_biUnion, filter_biUnion, filter_disjiUnion, fold_disjiUnion, image_biUnion, image_biUnion_filter_eq, inter_biUnion, map_disjiUnion, mem_biUnion, mem_disjiUnion, pairwiseDisjoint_disjUnion, pairwiseDisjoint_filter, sUnion_disjiUnion, singleton_biUnion, singleton_disjiUnion, subset_biUnion_of_mem, union_biUnion
52
Total54

Finset

Definitions

NameCategoryTheorems
biUnion πŸ“–CompOp
127 mathmath: iSup_biUnion, prod_biUnion_of_pairwise_eq_one, Finsupp.support_finset_sum, MvPolynomial.support_sum, MvPolynomial.vars_sum_of_disjoint, set_biUnion_biUnion, biUnion_image_sdiff_left, product_biUnion, card_le_card_biUnion, Finpartition.combine_parts, biUnion_image_sdiff_right, Finpartition.equitabilise_aux, Rel.interedges_biUnion, IsPrimitiveRoot.nthRoots_one_eq_biUnion_primitiveRoots, Rel.interedges_eq_biUnion, erase_biUnion, biUnion_image_left, coe_biUnion, Tree.treesOfNumNodesEq_succ, Finpartition.card_parts_equitabilise_subset_le, biUnion_image, Finpartition.IsEquipartition.card_biUnion_offDiag_le', Algebra.FormallyUnramified.finite_of_free_aux, Nonempty.biUnion, prod_biUnion, sum_biUnion_of_pairwise_eq_zero, inf_biUnion, biUnion_subset_iff_forall_subset, biUnion_val, Finpartition.IsEquipartition.card_biUnion_offDiag_le, disjiUnion_eq_biUnion, biUnion_nonempty, prod_indicator_biUnion_finset_sub_indicator, SkewMonoidAlgebra.support_sum, Algebra.adjoin_attach_biUnion, biUnion_mono, piAntidiag_insert, Nat.roughNumbersUpTo_eq_biUnion, Finpartition.IsEquipartition.card_interedges_sparsePairs_le, Submodule.span_attach_biUnion, product_eq_biUnion, all_card_le_biUnion_card_iff_existsInjective', biUnion_slice, BoxIntegral.Prepartition.sum_biUnion_boxes, powerset_card_biUnion, Finpartition.bind_parts, MvPolynomial.vars_eq_support_biUnion_support, Equiv.Perm.support_noncommProd, singleton_biUnion, biUnion_filter_eq_of_maps_to, card_biUnion, Finsupp.support_sum, Rel.interedges_biUnion_left, SzemerediRegularity.biUnion_star_subset_nonuniformWitness, iInf_biUnion, biUnion_union, biUnion_empty, biUnion_op_vadd_finset, dens_biUnion_le, Rel.interedges_biUnion_right, card_le_card_biUnion_add_one, biUnion_subset_biUnion_of_subset_left, inclusion_exclusion_card_biUnion, sup_eq_biUnion, product_eq_biUnion_right, MvPolynomial.support_esymm', Finpartition.biUnion_parts, Equiv.Perm.Basis.ofPermHom_support, SimpleGraph.unreduced_edges_subset, MvPolynomial.vars_prod, biUnion_singleton_eq_self, biUnion_insert, BoxIntegral.Prepartition.biUnion_boxes, subset_biUnion_of_mem, biUnion_image_sup_right, union_biUnion, Finpartition.IsEquipartition.sum_nonUniforms_lt, card_biUnion_le_of_intersecting, biUnion_inter, eraseNone_eq_biUnion, disjoint_biUnion_left, all_card_le_biUnion_card_iff_exists_injective, biUnion_image_inf_right, image_biUnion, biUnion_vadd_finset, MvPolynomial.vars_bind₁, inter_biUnion, biUnion_image_sup_left, biUnion_image_right, inclusion_exclusion_sum_biUnion, inf'_biUnion, Set.toFinset_iUnion, SupIndep.biUnion, card_biUnion_le_card_mul, card_le_card_biUnion_add_card_fiber, card_biUnion_le, dens_biUnion, biUnion_subset, MvPolynomial.support_esymm'', disjoint_biUnion_right, sum_biUnion, biUnion_biUnion, biUnion_congr, sigma_eq_biUnion, image_biUnion_filter_eq, finsuppAntidiag_insert, SimpleGraph.interedges_biUnion, biUnion_singleton, SimpleGraph.interedges_biUnion_left, sup_biUnion, biUnion_op_smul_finset, filter_biUnion, biUnion_smul_finset, SzemerediRegularity.card_biUnion_star_le_m_add_one_card_star_mul, Finpartition.biUnion_filter_atomise, biUnion_image_inf_left, DFinsupp.support_sum, Finsupp.support_sum_eq_biUnion, mem_biUnion, MvPolynomial.vars_sum_subset, pi_insert, set_biInter_biUnion, SimpleGraph.interedges_biUnion_right, Turing.PartrecToTM2.supports_biUnion, bind_toFinset, sup'_biUnion, Finpartition.IsEquipartition.card_interedges_sparsePairs_le'
disjiUnion πŸ“–CompOp
30 mathmath: disjiUnion_filter_eq, disjiUnion_singleton_eq_self, disjiUnion_filter_eq_of_maps_to, SimpleGraph.disjiUnion_supp_toFinset_eq_supp_toFinset, disjiUnion_eq_biUnion, List.fixedLengthDigits_succ_eq_disjiUnion, prod_disjiUnion, disjiUnion_disjUnion, card_disjiUnion, dens_disjiUnion, disjoint_disjiUnion_right, singleton_disjiUnion, mem_disjiUnion, fold_disjiUnion, disjiUnion_singleton, coe_disjiUnion, disjoint_disjiUnion_left, piAntidiag_cons, sUnion_disjiUnion, filter_disjiUnion, disjiUnion_empty, disjiUnion_map, powerset_card_disjiUnion, sum_disjiUnion, product_self_eq_disjiUnion_perm, map_disjiUnion, disjiUnion_cons, disjiUnion_Iic_disjointed, disjiUnion_val, disjiUnion_map_sigma_mk

Theorems

NameKindAssumesProvesValidatesDepends On
biUnion_biUnion πŸ“–mathematicalβ€”biUnionβ€”β€”
biUnion_congr πŸ“–mathematicalβ€”biUnionβ€”β€”
biUnion_empty πŸ“–mathematicalβ€”biUnion
Finset
instEmptyCollection
β€”β€”
biUnion_filter_eq_of_maps_to πŸ“–mathematicalFinset
instMembership
biUnion
filter
β€”β€”
biUnion_image πŸ“–mathematicalβ€”image
biUnion
β€”induction_on
biUnion_insert
image_union
biUnion_insert πŸ“–mathematicalβ€”biUnion
Finset
instInsert
instUnion
β€”ext
biUnion_inter πŸ“–mathematicalβ€”Finset
instInter
biUnion
β€”β€”
biUnion_mono πŸ“–mathematicalFinset
instHasSubset
biUnionβ€”β€”
biUnion_nonempty πŸ“–mathematicalβ€”Nonempty
biUnion
Finset
instMembership
β€”exists_swap
biUnion_singleton πŸ“–mathematicalβ€”biUnion
Finset
instSingleton
image
β€”β€”
biUnion_singleton_eq_self πŸ“–mathematicalβ€”biUnion
Finset
instSingleton
β€”β€”
biUnion_subset πŸ“–mathematicalβ€”Finset
instHasSubset
biUnion
β€”β€”
biUnion_subset_biUnion_of_subset_left πŸ“–mathematicalFinset
instHasSubset
biUnionβ€”β€”
biUnion_subset_iff_forall_subset πŸ“–mathematicalβ€”Finset
instHasSubset
biUnion
β€”β€”
biUnion_union πŸ“–mathematicalβ€”biUnion
Finset
instUnion
β€”β€”
biUnion_val πŸ“–mathematicalβ€”val
biUnion
Multiset.dedup
Multiset.bind
β€”β€”
bind_toFinset πŸ“–mathematicalβ€”Multiset.toFinset
Multiset.bind
biUnion
β€”ext
coe_biUnion πŸ“–mathematicalβ€”SetLike.coe
Finset
instSetLike
biUnion
Set.iUnion
Set
Set.instMembership
β€”β€”
coe_disjiUnion πŸ“–mathematicalSet.PairwiseDisjoint
Finset
partialOrder
instOrderBot
SetLike.coe
instSetLike
disjiUnion
Set.iUnion
Set
Set.instMembership
β€”β€”
disjiUnion_cons πŸ“–mathematicalFinset
instMembership
Set.PairwiseDisjoint
partialOrder
instOrderBot
SetLike.coe
instSetLike
cons
disjiUnion
disjUnion
mem_cons_of_mem
Disjoint
disjoint_left
mem_disjiUnion
mem_cons_self
β€”eq_of_veq
mem_cons_of_mem
disjoint_left
mem_disjiUnion
mem_cons_self
Multiset.cons_bind
disjiUnion_disjUnion πŸ“–mathematicalDisjoint
Finset
partialOrder
instOrderBot
Set.Pairwise
SetLike.coe
instSetLike
Set.PairwiseDisjoint
disjiUnion
disjUnion
pairwiseDisjoint_disjUnion
β€”β€”
disjiUnion_disjiUnion πŸ“–mathematicalSet.PairwiseDisjoint
Finset
partialOrder
instOrderBot
SetLike.coe
instSetLike
disjiUnion
instMembership
attach
mem_disjiUnion
Subtype.prop
Disjoint
disjoint_left
β€”eq_of_veq
mem_disjiUnion
Subtype.prop
disjoint_left
Multiset.bind_assoc
Multiset.attach_bind_coe
disjiUnion_empty πŸ“–mathematicalβ€”disjiUnion
Finset
instEmptyCollection
β€”β€”
disjiUnion_eq_biUnion πŸ“–mathematicalSet.PairwiseDisjoint
Finset
partialOrder
instOrderBot
SetLike.coe
instSetLike
disjiUnion
biUnion
β€”eq_of_veq
Multiset.Nodup.dedup
nodup
disjiUnion_filter_eq πŸ“–mathematicalβ€”disjiUnion
filter
Finset
instMembership
decidableMem
β€”ext
disjiUnion_filter_eq_of_maps_to πŸ“–mathematicalFinset
instMembership
disjiUnion
filter
β€”disjiUnion_filter_eq
disjiUnion_map πŸ“–mathematicalSet.PairwiseDisjoint
Finset
partialOrder
instOrderBot
SetLike.coe
instSetLike
map
disjiUnion
Set.Pairwise.mono'
Disjoint
Function.onFun
disjoint_map
β€”eq_of_veq
Set.Pairwise.mono'
disjoint_map
Multiset.map_bind
disjiUnion_singleton πŸ“–mathematicalβ€”disjiUnion
Finset
instSingleton
Function.onFun
Disjoint
partialOrder
instOrderBot
disjoint_singleton
map
β€”ext
disjoint_singleton
disjiUnion_singleton_eq_self πŸ“–mathematicalβ€”disjiUnion
Finset
instSingleton
β€”β€”
disjiUnion_val πŸ“–mathematicalSet.PairwiseDisjoint
Finset
partialOrder
instOrderBot
SetLike.coe
instSetLike
val
disjiUnion
Multiset.bind
β€”β€”
disjoint_biUnion_left πŸ“–mathematicalβ€”Disjoint
Finset
partialOrder
instOrderBot
biUnion
β€”induction
biUnion_insert
disjoint_biUnion_right πŸ“–mathematicalβ€”Disjoint
Finset
partialOrder
instOrderBot
biUnion
β€”disjoint_biUnion_left
disjoint_disjiUnion_left πŸ“–mathematicalSet.PairwiseDisjoint
Finset
partialOrder
instOrderBot
SetLike.coe
instSetLike
Disjoint
disjiUnion
β€”cons_induction
instIsEmptyFalse
mem_cons_of_mem
disjoint_left
mem_disjiUnion
mem_cons_self
disjiUnion_cons
disjoint_disjiUnion_right πŸ“–mathematicalSet.PairwiseDisjoint
Finset
partialOrder
instOrderBot
SetLike.coe
instSetLike
Disjoint
disjiUnion
β€”disjoint_disjiUnion_left
erase_biUnion πŸ“–mathematicalβ€”erase
biUnion
β€”β€”
filter_biUnion πŸ“–mathematicalβ€”filter
biUnion
β€”β€”
filter_disjiUnion πŸ“–mathematicalSet.PairwiseDisjoint
Finset
partialOrder
instOrderBot
SetLike.coe
instSetLike
filter
disjiUnion
pairwiseDisjoint_filter
β€”β€”
fold_disjiUnion πŸ“–mathematicalSet.PairwiseDisjoint
Finset
partialOrder
instOrderBot
SetLike.coe
instSetLike
fold
disjiUnion
β€”Multiset.map_bind
Multiset.fold_bind
image_biUnion πŸ“–mathematicalβ€”biUnion
image
β€”induction_on
image_insert
biUnion_insert
image_biUnion_filter_eq πŸ“–mathematicalβ€”biUnion
image
filter
β€”biUnion_filter_eq_of_maps_to
mem_image_of_mem
inter_biUnion πŸ“–mathematicalβ€”Finset
instInter
biUnion
β€”β€”
map_disjiUnion πŸ“–mathematicalSet.PairwiseDisjoint
Finset
partialOrder
instOrderBot
SetLike.coe
instSetLike
map
disjiUnion
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
mem_map_of_mem
Function.Embedding.injective
β€”eq_of_veq
mem_map_of_mem
Function.Embedding.injective
Multiset.bind_map
mem_biUnion πŸ“–mathematicalβ€”Finset
instMembership
biUnion
β€”β€”
mem_disjiUnion πŸ“–mathematicalSet.PairwiseDisjoint
Finset
partialOrder
instOrderBot
SetLike.coe
instSetLike
instMembership
disjiUnion
β€”β€”
pairwiseDisjoint_disjUnion πŸ“–mathematicalDisjoint
Finset
partialOrder
instOrderBot
Set.Pairwise
SetLike.coe
instSetLike
Set.PairwiseDisjoint
disjUnionβ€”Disjoint.symm
pairwiseDisjoint_filter πŸ“–mathematicalSet.PairwiseDisjoint
Finset
partialOrder
instOrderBot
SetLike.coe
instSetLike
filterβ€”disjoint_filter_filter
sUnion_disjiUnion πŸ“–mathematicalSet.PairwiseDisjoint
Finset
Set
partialOrder
instOrderBot
SetLike.coe
instSetLike
Set.sUnion
disjiUnion
Set.iUnion
instMembership
β€”Set.ext
coe_disjiUnion
singleton_biUnion πŸ“–mathematicalβ€”biUnion
Finset
instSingleton
β€”β€”
singleton_disjiUnion πŸ“–mathematicalSet.PairwiseDisjoint
Finset
partialOrder
instOrderBot
SetLike.coe
instSetLike
instSingleton
disjiUnionβ€”eq_of_veq
Multiset.singleton_bind
subset_biUnion_of_mem πŸ“–mathematicalFinset
instMembership
instHasSubset
biUnion
β€”β€”
union_biUnion πŸ“–mathematicalβ€”biUnion
Finset
instUnion
β€”β€”

Finset.Nonempty

Theorems

NameKindAssumesProvesValidatesDepends On
biUnion πŸ“–mathematicalFinset.NonemptyFinset.biUnionβ€”Finset.biUnion_nonempty

---

← Back to Index