Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Data/Finsupp/Basic.lean

Statistics

MetricCount
DefinitionscomapDomain, addMonoidHom, curry, curryAddEquiv, curryEquiv, domCongr, equivCongrLeft, equivMapDomain, extendDomain, filter, filterAddHom, finsuppProdEquiv, frange, graph, mapDomain, addMonoidHom, mapDomainEmbedding, piecewise, restrictSupportEquiv, sigmaFinsuppAddEquivPiFinsupp, sigmaFinsuppEquivPiFinsupp, split, splitComp, splitSupport, subtypeDomain, subtypeDomainAddMonoidHom, sumElim, sumFinsuppAddEquivProdFinsupp, sumFinsuppEquivProdFinsupp, uncurry, uniqueOfLeft, uniqueOfRight
32
Theoremsapply_eq_of_mem_graph, coe_curryAddEquiv, coe_sumElim, addMonoidHom_apply, comapDomain_add, comapDomain_add_of_injective, comapDomain_apply, comapDomain_mapDomain, comapDomain_single, comapDomain_support, comapDomain_surjective, comapDomain_zero, curryAddEquiv_symm_apply, curryEquiv_apply, curryEquiv_symm_apply, curry_apply, curry_single, curry_uncurry, domCongr_apply, domCongr_refl, domCongr_symm, domCongr_trans, embDomain_comapDomain, embDomain_eq_mapDomain, eq_zero_of_comapDomain_eq_zero, equivCongrLeft_apply, equivCongrLeft_symm, equivMapDomain_apply, equivMapDomain_eq_mapDomain, equivMapDomain_refl, equivMapDomain_refl', equivMapDomain_single, equivMapDomain_symm_apply, equivMapDomain_trans, equivMapDomain_trans', equivMapDomain_zero, extendDomain_apply, extendDomain_eq_embDomain_subtype, extendDomain_single, extendDomain_subtypeDomain, extendDomain_support, extendDomain_toFun, filter_add, filter_apply, filter_apply_neg, filter_apply_pos, filter_curry, filter_eq_indicator, filter_eq_self_iff, filter_eq_sum, filter_eq_zero_iff, filter_neg, filter_pos_add_filter_neg, filter_single_of_neg, filter_single_of_pos, filter_sub, filter_sum, filter_zero, finite_range, frange_single, fst_sumFinsuppAddEquivProdFinsupp, fst_sumFinsuppEquivProdFinsupp, graph_eq_empty, graph_inj, graph_injective, graph_zero, image_fst_graph, addMonoidHom_apply, addMonoidHom_comp, addMonoidHom_comp_mapRange, addMonoidHom_id, mapDomainEmbedding_apply, mapDomain_add, mapDomain_apply, mapDomain_apply', mapDomain_comapDomain, mapDomain_comapDomain_nat_add_one, mapDomain_comp, mapDomain_congr, mapDomain_equiv_apply, mapDomain_finset_sum, mapDomain_id, mapDomain_injOn, mapDomain_injective, mapDomain_mapRange, mapDomain_notin_range, mapDomain_single, mapDomain_sum, mapDomain_support, mapDomain_support_of_injOn, mapDomain_support_of_injective, mapDomain_surjective, mapDomain_zero, mapRange_finset_sum, mapRange_multiset_sum, mem_frange, mem_frange_of_mem, mem_graph_iff, mem_range_mapDomain_iff, mem_splitSupport_iff_nonzero, mem_support_finset_sum, mem_support_multiset_sum, mk_mem_graph, mk_mem_graph_iff, notMem_graph_snd_zero, piecewise_apply, piecewise_support, prod_div_prod_filter, prod_equivMapDomain, prod_filter_index, prod_filter_mul_prod_filter_not, prod_mapDomain_index, prod_mapDomain_index_inj, prod_subtypeDomain_index, prod_sumElim, range_subset_insert_frange, restrictSupportEquiv_apply, restrictSupportEquiv_symm_apply_coe, restrictSupportEquiv_symm_single, sigmaFinsuppAddEquivPiFinsupp_apply, sigmaFinsuppEquivPiFinsupp_apply, sigma_sum, sigma_support, snd_sumFinsuppAddEquivProdFinsupp, snd_sumFinsuppEquivProdFinsupp, split_apply, subtypeDomain_add, subtypeDomain_apply, subtypeDomain_eq_iff, subtypeDomain_eq_iff_forall, subtypeDomain_eq_zero_iff, subtypeDomain_eq_zero_iff', subtypeDomain_extendDomain, subtypeDomain_finsupp_sum, subtypeDomain_neg, subtypeDomain_not_piecewise, subtypeDomain_piecewise, subtypeDomain_sub, subtypeDomain_sum, subtypeDomain_zero, sumElim_apply, sumElim_inl, sumElim_inr, sumElim_support, sumFinsuppAddEquivProdFinsupp_apply, sumFinsuppAddEquivProdFinsupp_symm_apply, sumFinsuppAddEquivProdFinsupp_symm_inl, sumFinsuppAddEquivProdFinsupp_symm_inr, sumFinsuppEquivProdFinsupp_apply, sumFinsuppEquivProdFinsupp_symm_apply, sumFinsuppEquivProdFinsupp_symm_inl, sumFinsuppEquivProdFinsupp_symm_inr, sum_comapDomain, sum_curry_index, sum_equivMapDomain, sum_filter_add_sum_filter_not, sum_filter_index, sum_mapDomain_index, sum_mapDomain_index_addMonoidHom, sum_mapDomain_index_inj, sum_sub_sum_filter, sum_subtypeDomain_index, sum_sumElim, sum_uncurry_index, sum_uncurry_index', sum_update_add, support_curry, support_extendDomain_subset, support_filter, support_subtypeDomain, uncurry_apply, uncurry_apply_pair, uncurry_curry, uncurry_single, zero_notMem_frange, cast_finsuppProd, cast_finsupp_sum, cast_finsuppProd, cast_finsupp_sum, cast_finsuppProd, cast_finsupp_sum
181
Total213

Finsupp

Definitions

NameCategoryTheorems
comapDomain πŸ“–CompOp
19 mathmath: comapDomain_add, comapDomain_smul_of_injective, comapDomain_zero, Polynomial.derivativeFinsupp_derivative, embDomain_comapDomain, mapDomain_comapDomain, comapDomain_single, comapDomain_surjective, comapDomain_mapDomain, lcomapDomain_apply, comapDomain_apply, sumFinsuppAddEquivProdFinsupp_apply, sum_comapDomain, comapDomain_smul, comapDomain.addMonoidHom_apply, comapDomain_support, linearCombination_comapDomain, comapDomain_add_of_injective, sumFinsuppEquivProdFinsupp_apply
curry πŸ“–CompOp
10 mathmath: curryEquiv_apply, filter_curry, curry_single, coe_curryAddEquiv, uncurry_curry, sum_curry_index, curryLinearEquiv_apply, curry_uncurry, support_curry, curry_apply
curryAddEquiv πŸ“–CompOp
2 mathmath: coe_curryAddEquiv, curryAddEquiv_symm_apply
curryEquiv πŸ“–CompOp
2 mathmath: curryEquiv_apply, curryEquiv_symm_apply
domCongr πŸ“–CompOp
5 mathmath: domCongr_refl, domCongr_apply, domCongr_symm, domLCongr_apply, domCongr_trans
equivCongrLeft πŸ“–CompOp
2 mathmath: equivCongrLeft_apply, equivCongrLeft_symm
equivMapDomain πŸ“–CompOp
20 mathmath: equivCongrLeft_apply, equivMapDomain_single, MonoidAlgebra.opRingEquiv_symm_apply, sum_equivMapDomain, AddMonoidAlgebra.opRingEquiv_symm_apply, domCongr_apply, prod_equivMapDomain, LinearIndependent.span_repr_eq, equivMapDomain_trans', equivMapDomain_zero, equivMapDomain_eq_mapDomain, SkewMonoidAlgebra.toFinsupp_equivMapDomain, equivMapDomain_symm_apply, equivMapDomain_refl, equivMapDomain_apply, AddMonoidAlgebra.opRingEquiv_apply, linearCombination_equivMapDomain, equivMapDomain_trans, equivMapDomain_refl', MonoidAlgebra.opRingEquiv_apply
extendDomain πŸ“–CompOp
10 mathmath: support_extendDomain_subset, extendDomain_subtypeDomain, subtypeDomain_extendDomain, extendDomain_single, extendDomain_eq_embDomain_subtype, extendDomain_toFun, supportedEquivFinsupp_symm_apply_coe, extendDomain_support, extendDomain_apply, restrictSupportEquiv_symm_apply_coe
filter πŸ“–CompOp
26 mathmath: restrictDom_apply, filter_smul, filter_apply_neg, filter_apply_pos, filter_eq_indicator, filter_neg, sum_sub_sum_filter, filter_sum, filter_curry, sum_filter_add_sum_filter_not, filter_add, filter_sub, sum_filter_index, filter_eq_sum, filter_eq_zero_iff, prod_filter_mul_prod_filter_not, prod_filter_index, filter_single_of_neg, filter_apply, prod_div_prod_filter, filter_pos_add_filter_neg, filter_single_of_pos, filter_eq_self_iff, support_filter, Polynomial.IsUnitTrinomial.irreducible_aux1, filter_zero
filterAddHom πŸ“–CompOpβ€”
finsuppProdEquiv πŸ“–CompOpβ€”
frange πŸ“–CompOp
5 mathmath: range_subset_insert_frange, mem_frange_of_mem, frange_single, zero_notMem_frange, mem_frange
graph πŸ“–CompOp
10 mathmath: graph_inj, mk_mem_graph_iff, mk_mem_graph, notMem_graph_snd_zero, toAList_entries, graph_zero, image_fst_graph, graph_eq_empty, mem_graph_iff, graph_injective
mapDomain πŸ“–CompOp
55 mathmath: groupHomology.chainsMap_f_3_comp_chainsIso₃_apply, mapDomain_nonneg, mapDomain_comapDomain_nat_add_one, sum_mapDomain_index_inj, mem_range_mapDomain_iff, mapDomain_support_of_injective, mapDomain_support_of_injOn, mapDomain_mapRange, mapDomain_support, mapDomain_nonpos, mapDomain_surjective, mapDomain.coe_linearEquiv, MvPolynomial.support_rename_of_injective, mapDomain_injOn, sum_mapDomain_index, leftInverse_lcomapDomain_mapDomain, mapDomain_single, mapDomain_mono, mapDomain_comapDomain, Module.Basis.repr_reindex, comapDomain_mapDomain, mapDomain_zero, mapDomainEmbedding_apply, MvPolynomial.coeff_rename_mapDomain, prod_mapDomain_index_inj, mapDomain_id, mapDomain_congr, mapDomain_apply, TopModuleCat.freeMap_map, MvPolynomial.rename_monomial, equivMapDomain_eq_mapDomain, linearCombination_mapDomain, comapSMul_def, mapDomain_finset_sum, coe_lmapDomain, SkewMonoidAlgebra.toFinsupp_mapDomain, prod_mapDomain_index, mapDomain_equiv_apply, mapDomain.addMonoidHom_apply, embDomain_eq_mapDomain, mapDomain_comp, mapDomain_sum, mapDomain_apply', mapDomain_add, Algebra.Generators.comp_Οƒ, MvPolynomial.coeff_rename_ne_zero, toMultiset_map, mapDomain_smul, groupHomology.chainsMap_f_1_comp_chainsIso₁_apply, mapDomain_injective, sum_mapDomain_index_addMonoidHom, MvPolynomial.rename_eq, lmapDomain_apply, groupHomology.chainsMap_f_2_comp_chainsIsoβ‚‚_apply, mapDomain_notin_range
mapDomainEmbedding πŸ“–CompOp
1 mathmath: mapDomainEmbedding_apply
piecewise πŸ“–CompOp
4 mathmath: piecewise_apply, subtypeDomain_piecewise, piecewise_support, subtypeDomain_not_piecewise
restrictSupportEquiv πŸ“–CompOp
3 mathmath: restrictSupportEquiv_symm_single, restrictSupportEquiv_apply, restrictSupportEquiv_symm_apply_coe
sigmaFinsuppAddEquivPiFinsupp πŸ“–CompOp
1 mathmath: sigmaFinsuppAddEquivPiFinsupp_apply
sigmaFinsuppEquivPiFinsupp πŸ“–CompOp
1 mathmath: sigmaFinsuppEquivPiFinsupp_apply
split πŸ“–CompOp
6 mathmath: sigma_sum, split_embSigma_of_ne, split_apply, sigmaFinsuppEquivDFinsupp_apply, sigma_support, split_embSigma_self
splitComp πŸ“–CompOpβ€”
splitSupport πŸ“–CompOp
4 mathmath: sigmaFinsuppEquivDFinsupp_support, sigma_sum, sigma_support, mem_splitSupport_iff_nonzero
subtypeDomain πŸ“–CompOp
20 mathmath: subtypeDomain_add, subtypeDomain_neg, extendDomain_subtypeDomain, subtypeDomain_extendDomain, subtypeDomain_finsupp_sum, subtypeDomain_apply, support_subtypeDomain, subtypeDomain_eq_zero_iff', subtypeDomain_piecewise, subtypeDomain_eq_iff_forall, subtypeDomain_eq_zero_iff, sum_subtypeDomain_index, prod_subtypeDomain_index, restrictSupportEquiv_apply, subtypeDomain_eq_iff, subtypeDomain_not_piecewise, subtypeDomain_sub, subtypeDomain_sum, subtypeDomain_zero, lsubtypeDomain_apply
subtypeDomainAddMonoidHom πŸ“–CompOpβ€”
sumElim πŸ“–CompOp
11 mathmath: coe_sumElim, sumElim_inr, sumElim_apply, sumElim_support, sumFinsuppAddEquivProdFinsupp_symm_apply, prod_sumElim, sumFinsuppEquivProdFinsupp_symm_apply, Algebra.Generators.toComp_toAlgHom_monomial, sum_sumElim, Algebra.Generators.ofComp_toAlgHom_monomial_sumElim, sumElim_inl
sumFinsuppAddEquivProdFinsupp πŸ“–CompOp
8 mathmath: sumFinsuppLEquivProdFinsupp_apply, sumFinsuppAddEquivProdFinsupp_symm_inl, sumFinsuppAddEquivProdFinsupp_symm_apply, sumFinsuppLEquivProdFinsupp_symm_apply, snd_sumFinsuppAddEquivProdFinsupp, sumFinsuppAddEquivProdFinsupp_apply, fst_sumFinsuppAddEquivProdFinsupp, sumFinsuppAddEquivProdFinsupp_symm_inr
sumFinsuppEquivProdFinsupp πŸ“–CompOp
6 mathmath: sumFinsuppEquivProdFinsupp_symm_inr, fst_sumFinsuppEquivProdFinsupp, sumFinsuppEquivProdFinsupp_symm_apply, sumFinsuppEquivProdFinsupp_symm_inl, snd_sumFinsuppEquivProdFinsupp, sumFinsuppEquivProdFinsupp_apply
uncurry πŸ“–CompOp
10 mathmath: uncurry_apply, uncurry_single, uncurry_curry, sum_uncurry_index', sum_uncurry_index, uncurry_apply_pair, curryEquiv_symm_apply, curryAddEquiv_symm_apply, curry_uncurry, curryLinearEquiv_symm_apply
uniqueOfLeft πŸ“–CompOpβ€”
uniqueOfRight πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
apply_eq_of_mem_graph πŸ“–mathematicalFinset
Finset.instMembership
graph
DFunLike.coe
Finsupp
instFunLike
β€”mem_graph_iff
coe_curryAddEquiv πŸ“–mathematicalβ€”DFunLike.coe
AddEquiv
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
instZero
instAdd
instAddZeroClass
EquivLike.toFunLike
AddEquiv.instEquivLike
curryAddEquiv
curry
β€”β€”
coe_sumElim πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
instFunLike
sumElim
β€”β€”
comapDomain_add πŸ“–mathematicalSet.InjOn
Set.preimage
SetLike.coe
Finset
Finset.instSetLike
support
AddZero.toZero
AddZeroClass.toAddZero
Finsupp
instAdd
comapDomainβ€”ext
comapDomain_add_of_injective πŸ“–mathematicalβ€”comapDomain
AddZero.toZero
AddZeroClass.toAddZero
Finsupp
instAdd
Function.Injective.injOn
Set.preimage
SetLike.coe
Finset
Finset.instSetLike
support
β€”comapDomain_add
Function.Injective.injOn
comapDomain_apply πŸ“–mathematicalSet.InjOn
Set.preimage
SetLike.coe
Finset
Finset.instSetLike
support
DFunLike.coe
Finsupp
instFunLike
comapDomain
β€”β€”
comapDomain_mapDomain πŸ“–mathematicalβ€”comapDomain
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
mapDomain
Function.Injective.injOn
Set.preimage
SetLike.coe
Finset
Finset.instSetLike
support
β€”ext
Function.Injective.injOn
comapDomain_apply
mapDomain_apply
comapDomain_single πŸ“–mathematicalSet.InjOn
Set.preimage
SetLike.coe
Finset
Finset.instSetLike
support
single
comapDomainβ€”eq_or_ne
single_zero
comapDomain.congr_simp
comapDomain_zero
eq_single_iff
comapDomain_apply
comapDomain_support
Finset.coe_subset
Finset.coe_preimage
support_single_ne_zero
Finset.coe_singleton
single_eq_same
comapDomain_support πŸ“–mathematicalSet.InjOn
Set.preimage
SetLike.coe
Finset
Finset.instSetLike
support
comapDomain
Finset.preimage
β€”β€”
comapDomain_surjective πŸ“–mathematicalβ€”Finsupp
comapDomain
Function.Injective.injOn
Set.preimage
SetLike.coe
Finset
Finset.instSetLike
support
β€”isEmpty_or_nonempty
Function.Injective.injOn
ext
Function.Injective.hasLeftInverse
comapDomain_zero πŸ“–mathematicalSet.InjOn
Set.preimage
SetLike.coe
Finset
Finset.instSetLike
support
Finsupp
instZero
Set
Set.instEmptyCollection
Set.injOn_empty
Finset.instEmptyCollection
Finset.coe_empty
comapDomainβ€”ext
curryAddEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
AddEquiv
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
instZero
instAdd
instAddZeroClass
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquiv.symm
curryAddEquiv
uncurry
β€”β€”
curryEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Finsupp
instZero
EquivLike.toFunLike
Equiv.instEquivLike
curryEquiv
curry
β€”β€”
curryEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Finsupp
instZero
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
curryEquiv
uncurry
β€”β€”
curry_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
instFunLike
instZero
curry
β€”β€”
curry_single πŸ“–mathematicalβ€”curry
single
Finsupp
instZero
β€”curry_uncurry
uncurry_single
curry_uncurry πŸ“–mathematicalβ€”curry
uncurry
β€”ext
domCongr_apply πŸ“–mathematicalβ€”DFunLike.coe
AddEquiv
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAdd
EquivLike.toFunLike
AddEquiv.instEquivLike
domCongr
equivMapDomain
β€”β€”
domCongr_refl πŸ“–mathematicalβ€”domCongr
Equiv.refl
AddEquiv.refl
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAdd
β€”AddEquiv.ext
equivMapDomain_refl
domCongr_symm πŸ“–mathematicalβ€”AddEquiv.symm
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAdd
domCongr
Equiv.symm
β€”AddEquiv.ext
domCongr_trans πŸ“–mathematicalβ€”AddEquiv.trans
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAdd
domCongr
Equiv.trans
β€”AddEquiv.ext
equivMapDomain_trans
embDomain_comapDomain πŸ“–mathematicalSet
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
support
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
embDomain
comapDomain
Function.Injective.injOn
Function.Embedding.injective
Set.preimage
β€”ext
Function.Injective.injOn
Function.Embedding.injective
embDomain_apply_self
comapDomain_apply
notMem_support_iff
embDomain_notin_range
embDomain_eq_mapDomain πŸ“–mathematicalβ€”embDomain
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
mapDomain
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
β€”ext
mapDomain_apply
Function.Embedding.injective
embDomain_apply_self
mapDomain_notin_range
embDomain_notin_range
eq_zero_of_comapDomain_eq_zero πŸ“–β€”Set.BijOn
Set.preimage
SetLike.coe
Finset
Finset.instSetLike
support
comapDomain
Set.BijOn.injOn
Finsupp
instZero
β€”β€”Set.BijOn.injOn
support_eq_empty
comapDomain.eq_1
equivCongrLeft_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Finsupp
EquivLike.toFunLike
Equiv.instEquivLike
equivCongrLeft
equivMapDomain
β€”β€”
equivCongrLeft_symm πŸ“–mathematicalβ€”Equiv.symm
Finsupp
equivCongrLeft
β€”β€”
equivMapDomain_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
instFunLike
equivMapDomain
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
β€”β€”
equivMapDomain_eq_mapDomain πŸ“–mathematicalβ€”equivMapDomain
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
mapDomain
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
β€”ext
mapDomain_equiv_apply
equivMapDomain_refl πŸ“–mathematicalβ€”equivMapDomain
Equiv.refl
β€”ext
equivMapDomain_refl' πŸ“–mathematicalβ€”equivMapDomain
Equiv.refl
Finsupp
β€”ext
equivMapDomain_single πŸ“–mathematicalβ€”equivMapDomain
single
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
β€”ext
single_apply
equivMapDomain_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
instFunLike
equivMapDomain
Equiv.symm
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
β€”β€”
equivMapDomain_trans πŸ“–mathematicalβ€”equivMapDomain
Equiv.trans
β€”ext
equivMapDomain_trans' πŸ“–mathematicalβ€”equivMapDomain
Equiv.trans
Finsupp
β€”ext
equivMapDomain_zero πŸ“–mathematicalβ€”equivMapDomain
Finsupp
instZero
β€”ext
extendDomain_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
instFunLike
extendDomain
β€”β€”
extendDomain_eq_embDomain_subtype πŸ“–mathematicalβ€”extendDomain
embDomain
Function.Embedding.subtype
β€”ext
embDomain_apply_self
instIsEmptyFalse
extendDomain_single πŸ“–mathematicalβ€”extendDomain
single
β€”ext
eq_or_ne
Subtype.prop
Subtype.coe_eta
extendDomain_subtypeDomain πŸ“–mathematicalβ€”extendDomain
subtypeDomain
β€”ext
extendDomain_support πŸ“–mathematicalβ€”support
extendDomain
Finset.map
Function.Embedding.subtype
β€”Finset.disjUnion_empty
extendDomain_toFun πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
instFunLike
extendDomain
β€”extendDomain_apply
filter_add πŸ“–mathematicalβ€”filter
AddZero.toZero
AddZeroClass.toAddZero
Finsupp
instAdd
β€”AddMonoidHom.map_add
filter_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
instFunLike
filter
β€”β€”
filter_apply_neg πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
instFunLike
filter
β€”β€”
filter_apply_pos πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
instFunLike
filter
β€”β€”
filter_curry πŸ“–mathematicalβ€”curry
filter
Finsupp
instZero
β€”ext
filter_eq_indicator πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
instFunLike
filter
Set.indicator
setOf
β€”Set.indicator_apply
filter_eq_self_iff πŸ“–mathematicalβ€”filterβ€”filter_eq_indicator
filter_eq_sum πŸ“–mathematicalβ€”filter
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset.sum
Finsupp
instAddCommMonoid
Finset.filter
support
single
DFunLike.coe
instFunLike
β€”sum_single
Finset.sum_congr
filter_apply_pos
Finset.mem_filter
filter_eq_zero_iff πŸ“–mathematicalβ€”filter
Finsupp
instZero
DFunLike.coe
instFunLike
β€”filter_eq_indicator
filter_neg πŸ“–mathematicalβ€”filter
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Finsupp
instNeg
β€”AddMonoidHom.map_neg
filter_pos_add_filter_neg πŸ“–mathematicalβ€”Finsupp
AddZero.toZero
AddZeroClass.toAddZero
instAdd
filter
β€”DFunLike.coe_injective
filter_eq_indicator
Set.indicator_self_add_compl
filter_single_of_neg πŸ“–mathematicalβ€”filter
single
Finsupp
instZero
β€”filter_eq_zero_iff
single_apply_eq_zero
filter_single_of_pos πŸ“–mathematicalβ€”filter
single
β€”filter_eq_self_iff
single_apply_ne_zero
filter_sub πŸ“–mathematicalβ€”filter
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Finsupp
instSub
β€”AddMonoidHom.map_sub
filter_sum πŸ“–mathematicalβ€”filter
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset.sum
Finsupp
instAddCommMonoid
β€”map_sum
AddMonoidHom.instAddMonoidHomClass
filter_zero πŸ“–mathematicalβ€”filter
Finsupp
instZero
β€”support_eq_empty
support_filter
support_zero
Finset.filter_empty
finite_range πŸ“–mathematicalβ€”Set.Finite
Set.range
DFunLike.coe
Finsupp
instFunLike
β€”Set.Finite.subset
range_subset_insert_frange
frange_single πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
frange
single
Finset.instSingleton
β€”β€”
fst_sumFinsuppAddEquivProdFinsupp πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instFunLike
AddEquiv
instAdd
Prod.instAdd
EquivLike.toFunLike
AddEquiv.instEquivLike
sumFinsuppAddEquivProdFinsupp
β€”β€”
fst_sumFinsuppEquivProdFinsupp πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
instFunLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
sumFinsuppEquivProdFinsupp
β€”β€”
graph_eq_empty πŸ“–mathematicalβ€”graph
Finset
Finset.instEmptyCollection
Finsupp
instZero
β€”graph_injective
graph_zero
graph_inj πŸ“–mathematicalβ€”graphβ€”graph_injective
graph_injective πŸ“–mathematicalβ€”Finsupp
Finset
graph
β€”image_fst_graph
ext_iff'
apply_eq_of_mem_graph
mk_mem_graph
graph_zero πŸ“–mathematicalβ€”graph
Finsupp
instZero
Finset
Finset.instEmptyCollection
β€”β€”
image_fst_graph πŸ“–mathematicalβ€”Finset.image
graph
support
β€”Finset.map_eq_image
Finset.image_image
Finset.image_id'
mapDomainEmbedding_apply πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Function.instFunLikeEmbedding
mapDomainEmbedding
mapDomain
Nat.instAddCommMonoid
β€”β€”
mapDomain_add πŸ“–mathematicalβ€”mapDomain
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAdd
β€”sum_add_index'
single_zero
single_add
mapDomain_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instFunLike
mapDomain
β€”mapDomain.eq_1
sum_apply
sum_eq_single
single_eq_of_ne'
single_zero
coe_zero
Pi.zero_apply
single_eq_same
mapDomain_apply' πŸ“–mathematicalSet
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Set.InjOn
Set.instMembership
DFunLike.coe
Finsupp
instFunLike
mapDomain
β€”mapDomain.eq_1
sum_apply
sum.eq_1
Finset.sum_congr
single_apply
Finset.add_sum_erase
Finset.sum_eq_zero
Set.InjOn.ne
Set.InjOn.mono
Finset.mem_of_mem_erase
Finset.ne_of_mem_erase
add_zero
notMem_support_iff
mapDomain_comapDomain πŸ“–mathematicalSet
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Set.range
mapDomain
comapDomain
Function.Injective.injOn
Set.preimage
β€”Function.Injective.injOn
Function.Embedding.injective
embDomain_comapDomain
embDomain_eq_mapDomain
mapDomain_comapDomain_nat_add_one πŸ“–mathematicalβ€”mapDomain
DFunLike.coe
AddMonoidHom
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddZeroClass
AddMonoidHom.instFunLike
comapDomain.addMonoidHom
add_left_injective
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
erase
β€”add_left_injective
AddRightCancelSemigroup.toIsRightCancelAdd
Function.Injective.injOn
ext
erase_ne
mapDomain_comapDomain
support_erase
Finset.coe_erase
mapDomain_comp πŸ“–mathematicalβ€”mapDomainβ€”sum_sum_index
single_zero
single_add
sum_congr
sum_single_index
mapDomain_congr πŸ“–mathematicalβ€”mapDomainβ€”Finset.sum_congr
mapDomain_equiv_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instFunLike
mapDomain
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
β€”Equiv.apply_symm_apply
mapDomain_apply
Equiv.injective
mapDomain_finset_sum πŸ“–mathematicalβ€”mapDomain
Finset.sum
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
β€”map_sum
AddMonoidHom.instAddMonoidHomClass
mapDomain_id πŸ“–mathematicalβ€”mapDomainβ€”sum_single
mapDomain_injOn πŸ“–mathematicalSet.InjOnFinsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
mapDomain
setOf
Set
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
support
β€”ext
mapDomain_apply'
Set.union_subset
mapDomain_injective πŸ“–mathematicalβ€”Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
mapDomain
β€”ext
mapDomain_apply
mapDomain_mapRange πŸ“–mathematicalAddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
mapDomain
mapRange
β€”DFunLike.congr_fun
mapDomain.addMonoidHom_comp_mapRange
mapDomain_notin_range πŸ“–mathematicalSet
Set.instMembership
Set.range
DFunLike.coe
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instFunLike
mapDomain
β€”mapDomain.eq_1
sum_apply
sum.eq_1
Finset.sum_eq_zero
single_eq_of_ne
Set.mem_range_self
mapDomain_single πŸ“–mathematicalβ€”mapDomain
single
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”sum_single_index
single_zero
mapDomain_sum πŸ“–mathematicalβ€”mapDomain
sum
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
β€”map_finsuppSum
AddMonoidHom.instAddMonoidHomClass
mapDomain_support πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
mapDomain
Finset.image
β€”Finset.Subset.trans
support_sum
Finset.biUnion_mono
support_single_subset
Finset.biUnion_singleton
subset_refl
Finset.instReflSubset
mapDomain_support_of_injOn πŸ“–mathematicalSet.InjOn
SetLike.coe
Finset
Finset.instSetLike
support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
mapDomain
Finset.image
β€”Finset.Subset.antisymm
mapDomain_support
mapDomain_apply'
Finset.Subset.refl
mapDomain_support_of_injective πŸ“–mathematicalβ€”support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
mapDomain
Finset.image
β€”mapDomain_support_of_injOn
Function.Injective.injOn
mapDomain_surjective πŸ“–mathematicalβ€”Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
mapDomain
β€”mapDomain_comp
Function.rightInverse_surjInv
mapDomain_id
mapDomain_zero πŸ“–mathematicalβ€”mapDomain
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instZero
β€”sum_zero_index
mapRange_finset_sum πŸ“–mathematicalβ€”mapRange
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
map_zero
AddMonoidHomClass.toZeroHomClass
Finset.sum
Finsupp
instAddCommMonoid
β€”map_sum
AddMonoidHom.instAddMonoidHomClass
mapRange_multiset_sum πŸ“–mathematicalβ€”mapRange
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
map_zero
AddMonoidHomClass.toZeroHomClass
Multiset.sum
Finsupp
instAddCommMonoid
Multiset.map
β€”AddMonoidHom.map_multiset_sum
mem_frange πŸ“–mathematicalβ€”Finset
Finset.instMembership
frange
Set
Set.instMembership
Set.range
DFunLike.coe
Finsupp
instFunLike
β€”frange.eq_1
Finset.mem_image
mem_support_iff
mem_frange_of_mem πŸ“–mathematicalFinset
Finset.instMembership
support
frange
DFunLike.coe
Finsupp
instFunLike
β€”β€”
mem_graph_iff πŸ“–mathematicalβ€”Finset
Finset.instMembership
graph
DFunLike.coe
Finsupp
instFunLike
β€”mk_mem_graph_iff
mem_range_mapDomain_iff πŸ“–mathematicalβ€”Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Set
Set.instMembership
Set.range
mapDomain
DFunLike.coe
instFunLike
β€”mapDomain_notin_range
Function.Injective.injOn
mapDomain_comapDomain
mem_splitSupport_iff_nonzero πŸ“–mathematicalβ€”Finset
Finset.instMembership
splitSupport
β€”splitSupport.eq_1
Finset.mem_image
support_eq_empty
Finset.nonempty_iff_ne_empty
split.eq_1
comapDomain.eq_1
Finset.Nonempty.eq_1
mem_support_finset_sum πŸ“–β€”Finset
Finset.instMembership
support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset.sum
Finsupp
instAddCommMonoid
β€”β€”mem_support_multiset_sum
Multiset.mem_map
mem_support_multiset_sum πŸ“–mathematicalFinset
Finset.instMembership
support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Multiset.sum
Finsupp
instAddCommMonoid
Multiset
Multiset.instMembership
β€”Multiset.induction_on
Multiset.mem_cons_self
mem_support_iff
zero_add
notMem_support_iff
Multiset.sum_cons
Multiset.mem_cons_of_mem
mk_mem_graph πŸ“–mathematicalFinset
Finset.instMembership
support
graph
DFunLike.coe
Finsupp
instFunLike
β€”mk_mem_graph_iff
mem_support_iff
mk_mem_graph_iff πŸ“–mathematicalβ€”Finset
Finset.instMembership
graph
DFunLike.coe
Finsupp
instFunLike
β€”β€”
notMem_graph_snd_zero πŸ“–mathematicalβ€”Finset
Finset.instMembership
graph
β€”mem_graph_iff
piecewise_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
instFunLike
piecewise
β€”β€”
piecewise_support πŸ“–mathematicalβ€”support
piecewise
Finset.disjUnion
Finset.map
Function.Embedding.subtype
β€”β€”
prod_div_prod_filter πŸ“–mathematicalβ€”DivInvMonoid.toDiv
Group.toDivInvMonoid
CommGroup.toGroup
prod
CommGroup.toCommMonoid
filter
β€”div_eq_of_eq_mul'
prod_filter_mul_prod_filter_not
prod_equivMapDomain πŸ“–mathematicalβ€”prod
equivMapDomain
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
β€”Finset.prod_congr
Finset.prod_map
Equiv.symm_apply_apply
prod_filter_index πŸ“–mathematicalβ€”prod
filter
Finset.prod
support
DFunLike.coe
Finsupp
instFunLike
β€”Finset.prod_congr
filter_apply_pos
Finset.mem_filter
support_filter
prod_filter_mul_prod_filter_not πŸ“–mathematicalβ€”MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
prod
filter
β€”prod_filter_index
Finset.prod_filter_mul_prod_filter_not
prod_mapDomain_index πŸ“–mathematicalAddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
MulOne.toMul
prod
mapDomain
β€”prod_sum_index
prod_congr
prod_single_index
prod_mapDomain_index_inj πŸ“–mathematicalβ€”prod
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
mapDomain
β€”embDomain_eq_mapDomain
prod_embDomain
prod_subtypeDomain_index πŸ“–mathematicalβ€”prod
subtypeDomain
β€”Finset.prod_bij
prod_sumElim πŸ“–mathematicalβ€”prod
sumElim
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”Finset.prod_congr
Finset.prod_disjSum
range_subset_insert_frange πŸ“–mathematicalβ€”Set
Set.instHasSubset
Set.range
DFunLike.coe
Finsupp
instFunLike
Set.instInsert
SetLike.coe
Finset
Finset.instSetLike
frange
β€”β€”
restrictSupportEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Set
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
support
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
restrictSupportEquiv
subtypeDomain
Set.instMembership
β€”β€”
restrictSupportEquiv_symm_apply_coe πŸ“–mathematicalβ€”Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Set
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
support
DFunLike.coe
Equiv
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
restrictSupportEquiv
extendDomain
Set.instMembership
β€”restrictSupportEquiv.eq_1
restrictSupportEquiv_symm_single πŸ“–mathematicalβ€”Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Set
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
support
DFunLike.coe
Equiv
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
restrictSupportEquiv
single
Set.instMembership
β€”restrictSupportEquiv_symm_apply_coe
extendDomain_single
sigmaFinsuppAddEquivPiFinsupp_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instFunLike
AddEquiv
instAdd
Pi.instAdd
EquivLike.toFunLike
AddEquiv.instEquivLike
sigmaFinsuppAddEquivPiFinsupp
β€”β€”
sigmaFinsuppEquivPiFinsupp_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
instFunLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
sigmaFinsuppEquivPiFinsupp
β€”β€”
sigma_sum πŸ“–mathematicalβ€”sum
Finset.sum
splitSupport
split
β€”Finset.sum_congr
sigma_support
Finset.sum_sigma
split_apply
sigma_support πŸ“–mathematicalβ€”support
Finset.sigma
splitSupport
split
β€”β€”
snd_sumFinsuppAddEquivProdFinsupp πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instFunLike
AddEquiv
instAdd
Prod.instAdd
EquivLike.toFunLike
AddEquiv.instEquivLike
sumFinsuppAddEquivProdFinsupp
β€”β€”
snd_sumFinsuppEquivProdFinsupp πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
instFunLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
sumFinsuppEquivProdFinsupp
β€”β€”
split_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
instFunLike
split
β€”split.eq_1
comapDomain_apply
subtypeDomain_add πŸ“–mathematicalβ€”subtypeDomain
AddZero.toZero
AddZeroClass.toAddZero
Finsupp
instAdd
β€”ext
subtypeDomain_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
instFunLike
subtypeDomain
β€”β€”
subtypeDomain_eq_iff πŸ“–mathematicalβ€”subtypeDomainβ€”subtypeDomain_eq_iff_forall
ext
em
notMem_support_iff
subtypeDomain_eq_iff_forall πŸ“–mathematicalβ€”subtypeDomain
DFunLike.coe
Finsupp
instFunLike
β€”β€”
subtypeDomain_eq_zero_iff πŸ“–mathematicalβ€”subtypeDomain
Finsupp
instZero
β€”subtypeDomain_eq_iff
instIsEmptyFalse
subtypeDomain_eq_zero_iff' πŸ“–mathematicalβ€”subtypeDomain
Finsupp
instZero
DFunLike.coe
instFunLike
β€”subtypeDomain_eq_iff_forall
subtypeDomain_extendDomain πŸ“–mathematicalβ€”subtypeDomain
extendDomain
β€”subtypeDomain_piecewise
subtypeDomain_finsupp_sum πŸ“–mathematicalβ€”subtypeDomain
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
sum
Finsupp
instAddCommMonoid
β€”subtypeDomain_sum
subtypeDomain_neg πŸ“–mathematicalβ€”subtypeDomain
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Finsupp
instNeg
β€”ext
subtypeDomain_not_piecewise πŸ“–mathematicalβ€”subtypeDomain
piecewise
β€”ext
Subtype.prop
subtypeDomain_piecewise πŸ“–mathematicalβ€”subtypeDomain
piecewise
β€”ext
Subtype.prop
subtypeDomain_sub πŸ“–mathematicalβ€”subtypeDomain
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Finsupp
instSub
β€”ext
subtypeDomain_sum πŸ“–mathematicalβ€”subtypeDomain
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset.sum
Finsupp
instAddCommMonoid
β€”map_sum
AddMonoidHom.instAddMonoidHomClass
subtypeDomain_zero πŸ“–mathematicalβ€”subtypeDomain
Finsupp
instZero
β€”β€”
sumElim_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
instFunLike
sumElim
β€”β€”
sumElim_inl πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
instFunLike
sumElim
β€”β€”
sumElim_inr πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
instFunLike
sumElim
β€”β€”
sumElim_support πŸ“–mathematicalβ€”support
sumElim
Finset.disjSum
β€”β€”
sumFinsuppAddEquivProdFinsupp_apply πŸ“–mathematicalβ€”DFunLike.coe
AddEquiv
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instAdd
Prod.instAdd
EquivLike.toFunLike
AddEquiv.instEquivLike
sumFinsuppAddEquivProdFinsupp
comapDomain
β€”β€”
sumFinsuppAddEquivProdFinsupp_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
AddEquiv
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Prod.instAdd
instAdd
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquiv.symm
sumFinsuppAddEquivProdFinsupp
sumElim
β€”β€”
sumFinsuppAddEquivProdFinsupp_symm_inl πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instFunLike
AddEquiv
Prod.instAdd
instAdd
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquiv.symm
sumFinsuppAddEquivProdFinsupp
β€”β€”
sumFinsuppAddEquivProdFinsupp_symm_inr πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instFunLike
AddEquiv
Prod.instAdd
instAdd
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquiv.symm
sumFinsuppAddEquivProdFinsupp
β€”β€”
sumFinsuppEquivProdFinsupp_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Finsupp
EquivLike.toFunLike
Equiv.instEquivLike
sumFinsuppEquivProdFinsupp
comapDomain
β€”β€”
sumFinsuppEquivProdFinsupp_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Finsupp
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
sumFinsuppEquivProdFinsupp
sumElim
β€”β€”
sumFinsuppEquivProdFinsupp_symm_inl πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
instFunLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
sumFinsuppEquivProdFinsupp
β€”β€”
sumFinsuppEquivProdFinsupp_symm_inr πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
instFunLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
sumFinsuppEquivProdFinsupp
β€”β€”
sum_comapDomain πŸ“–mathematicalSet.BijOn
Set.preimage
SetLike.coe
Finset
Finset.instSetLike
support
sum
comapDomain
Set.BijOn.injOn
β€”Finset.sum_preimage_of_bij
sum_curry_index πŸ“–mathematicalβ€”sum
Finsupp
instZero
curry
β€”sum_uncurry_index'
uncurry_curry
sum_equivMapDomain πŸ“–mathematicalβ€”sum
equivMapDomain
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
β€”Finset.sum_congr
Finset.sum_map
Equiv.symm_apply_apply
sum_filter_add_sum_filter_not πŸ“–mathematicalβ€”AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
sum
filter
β€”sum_filter_index
Finset.sum_filter_add_sum_filter_not
sum_filter_index πŸ“–mathematicalβ€”sum
filter
Finset.sum
support
DFunLike.coe
Finsupp
instFunLike
β€”Finset.sum_congr
filter_apply_pos
Finset.mem_filter
support_filter
sum_mapDomain_index πŸ“–mathematicalAddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddZero.toAdd
sum
mapDomain
β€”sum_sum_index
sum_congr
sum_single_index
sum_mapDomain_index_addMonoidHom πŸ“–mathematicalβ€”sum
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
mapDomain
DFunLike.coe
AddMonoidHom
AddMonoidHom.instFunLike
β€”sum_mapDomain_index
AddMonoidHom.map_zero
AddMonoidHom.map_add
sum_mapDomain_index_inj πŸ“–mathematicalβ€”sum
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
mapDomain
β€”embDomain_eq_mapDomain
sum_embDomain
sum_sub_sum_filter πŸ“–mathematicalβ€”SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
sum
AddCommGroup.toAddCommMonoid
filter
β€”sub_eq_of_eq_add'
sum_filter_add_sum_filter_not
sum_subtypeDomain_index πŸ“–mathematicalβ€”sum
subtypeDomain
β€”Finset.sum_bij
mem_support_iff
sum_sumElim πŸ“–mathematicalβ€”sum
sumElim
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”Finset.sum_congr
Finset.sum_disjSum
sum_uncurry_index πŸ“–mathematicalβ€”sum
uncurry
Finsupp
instZero
β€”Finset.sum_congr
Finset.sum_disjiUnion
Finset.sum_map
sum_uncurry_index' πŸ“–mathematicalβ€”sum
uncurry
Finsupp
instZero
β€”sum_uncurry_index
sum_update_add πŸ“–mathematicalAddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddZero.toAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
sum
update
DFunLike.coe
Finsupp
instFunLike
β€”update_eq_erase_add_single
sum_add_index'
update_self
add_assoc
add_comm
sum_single_index
support_curry πŸ“–mathematicalβ€”support
Finsupp
instZero
curry
Finset.image
β€”Lean.Meta.FastSubsingleton.elim
Lean.Meta.instFastSubsingletonForall
Lean.Meta.instFastSubsingletonDecidable
support_extendDomain_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
support
extendDomain
setOf
β€”β€”
support_filter πŸ“–mathematicalβ€”support
filter
Finset.filter
β€”β€”
support_subtypeDomain πŸ“–mathematicalβ€”support
subtypeDomain
Finset.subtype
β€”β€”
uncurry_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
instFunLike
uncurry
instZero
β€”β€”
uncurry_apply_pair πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
instFunLike
uncurry
instZero
β€”β€”
uncurry_curry πŸ“–mathematicalβ€”uncurry
curry
β€”ext
uncurry_single πŸ“–mathematicalβ€”uncurry
single
Finsupp
instZero
β€”ext
eq_or_ne
single_eq_same
single_apply
single_eq_of_ne'
zero_notMem_frange πŸ“–mathematicalβ€”Finset
Finset.instMembership
frange
β€”mem_frange

Finsupp.comapDomain

Definitions

NameCategoryTheorems
addMonoidHom πŸ“–CompOp
3 mathmath: Finsupp.mapDomain_comapDomain_nat_add_one, LinearMap.snd_prodOfFinsuppNat, addMonoidHom_apply

Theorems

NameKindAssumesProvesValidatesDepends On
addMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
Finsupp.instAddZeroClass
AddMonoidHom.instFunLike
addMonoidHom
Finsupp.comapDomain
β€”β€”

Finsupp.mapDomain

Definitions

NameCategoryTheorems
addMonoidHom πŸ“–CompOp
5 mathmath: addMonoidHom_comp, AddCommMonCat.free_map, addMonoidHom_apply, addMonoidHom_id, addMonoidHom_comp_mapRange

Theorems

NameKindAssumesProvesValidatesDepends On
addMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finsupp.instAddZeroClass
AddMonoidHom.instFunLike
addMonoidHom
Finsupp.mapDomain
β€”β€”
addMonoidHom_comp πŸ“–mathematicalβ€”addMonoidHom
AddMonoidHom.comp
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finsupp.instAddZeroClass
β€”AddMonoidHom.ext
Finsupp.mapDomain_comp
addMonoidHom_comp_mapRange πŸ“–mathematicalβ€”AddMonoidHom.comp
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finsupp.instAddZeroClass
addMonoidHom
Finsupp.mapRange.addMonoidHom
β€”Finsupp.addHom_ext'
AddMonoidHom.ext
Finsupp.ext
Finsupp.mapRange_single
Finsupp.mapDomain_single
addMonoidHom_id πŸ“–mathematicalβ€”addMonoidHom
AddMonoidHom.id
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finsupp.instAddZeroClass
β€”AddMonoidHom.ext
Finsupp.mapDomain_id

Int

Theorems

NameKindAssumesProvesValidatesDepends On
cast_finsuppProd πŸ“–mathematicalβ€”AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
CommRing.toRing
Finsupp.prod
instCommMonoid
CommRing.toCommMonoid
β€”cast_prod
cast_finsupp_sum πŸ“–mathematicalβ€”AddGroupWithOne.toIntCast
AddCommGroupWithOne.toAddGroupWithOne
Finsupp.sum
instAddCommMonoid
AddCommMonoidWithOne.toAddCommMonoid
AddCommGroupWithOne.toAddCommMonoidWithOne
β€”cast_sum

Nat

Theorems

NameKindAssumesProvesValidatesDepends On
cast_finsuppProd πŸ“–mathematicalβ€”AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Finsupp.prod
instCommMonoid
CommSemiring.toCommMonoid
β€”cast_prod
cast_finsupp_sum πŸ“–mathematicalβ€”AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
Finsupp.sum
instAddCommMonoid
AddCommMonoidWithOne.toAddCommMonoid
β€”cast_sum

Rat

Theorems

NameKindAssumesProvesValidatesDepends On
cast_finsuppProd πŸ“–mathematicalβ€”DivisionRing.toRatCast
Field.toDivisionRing
Finsupp.prod
commMonoid
CommRing.toCommMonoid
Field.toCommRing
β€”cast_prod
cast_finsupp_sum πŸ“–mathematicalβ€”DivisionRing.toRatCast
Finsupp.sum
addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
β€”cast_sum

---

← Back to Index