Documentation Verification Report

Order

πŸ“ Source: Mathlib/Data/Finsupp/Order.lean

Statistics

MetricCount
DefinitionsdecidableLE, decidableLT, orderBot, tsub
4
TheoremsaddLeftReflectLE, add_eq_zero_iff, add_sub_single_one, bot_eq_zero, coe_tsub, disjoint_iff, instCanonicallyOrderedAddOfAddLeftMono, instPosSMulMono, instPosSMulReflectLE, instPosSMulStrictMono, instSMulPosMono, instSMulPosReflectLE, instSMulPosReflectLT, instSMulPosStrictMono, isOrderedAddMonoid, isOrderedCancelAddMonoid, le_iff, le_iff', mapDomain_mono, mapDomain_nonneg, mapDomain_nonpos, orderedSub, single_le_iff, single_le_single, single_mono, single_nonneg, single_nonpos, single_tsub, sub_add_single_one_cancel, sub_single_one_add, subset_support_tsub, sum_le_sum, sum_le_sum_index, sum_nonneg, sum_nonneg', sum_nonpos, sum_pos, sum_pos', support_inf, support_mono, support_monotone, support_sup, support_tsub, tsub_apply
44
Total48

Finsupp

Definitions

NameCategoryTheorems
decidableLE πŸ“–CompOp
6 mathmath: MvPowerSeries.coeff_mul_monomial, MvPowerSeries.coeff_monomial_mul, MvPolynomial.coeff_monomial_mul', MvPowerSeries.coeff_trunc', MvPowerSeries.coeff_truncFun', MvPolynomial.coeff_mul_monomial'
decidableLT πŸ“–CompOp
5 mathmath: MvPowerSeries.coeff_inv, MvPowerSeries.coeff_inv_aux, MvPowerSeries.coeff_trunc, MvPowerSeries.coeff_truncFun, MvPowerSeries.coeff_invOfUnit
orderBot πŸ“–CompOp
4 mathmath: bot_eq_zero, disjoint_iff, card_Iic, card_Iio
tsub πŸ“–CompOp
27 mathmath: MonomialOrder.sPolynomial_leadingTerm_mul', MvPowerSeries.coeff_mul_monomial, MvPolynomial.coeff_X_mul', MvPowerSeries.coeff_monomial_mul, add_sub_single_one, sub_add_single_one_cancel, MvPolynomial.mkDerivationβ‚—_monomial, Nat.dvd_iff_div_factorization_eq_tsub, MonomialOrder.sPolynomial_def, MvPolynomial.coeff_monomial_mul', MvPolynomial.mkDerivation_monomial, single_tsub, MvPolynomial.coeff_mul_X', MonomialOrder.sPolynomial_monomial_mul, MvPolynomial.pderiv_monomial, subset_support_tsub, Nat.factorization_div, MonomialOrder.sPolynomial_monomial_mul', tsub_apply, weight_sub_single_add, coe_tsub, orderedSub, MvPolynomial.coeff_mul_monomial', sub_single_one_add, support_tsub, MonomialOrder.sPolynomial_mul_monomial, MonomialOrder.sPolynomial_leadingTerm_mul

Theorems

NameKindAssumesProvesValidatesDepends On
addLeftReflectLE πŸ“–mathematicalβ€”AddLeftReflectLE
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAdd
instLE
Preorder.toLE
PartialOrder.toPreorder
β€”le_of_add_le_add_left
add_eq_zero_iff πŸ“–mathematicalβ€”Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAdd
instZero
β€”Unique.instSubsingleton
add_sub_single_one πŸ“–mathematicalβ€”Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
tsub
Nat.instAddCommMonoid
Nat.instPartialOrder
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
single
β€”Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
add_tsub_assoc_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
instCanonicallyOrderedAddOfAddLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
isOrderedAddMonoid
orderedSub
addLeftReflectLE
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
single_le_iff
bot_eq_zero πŸ“–mathematicalβ€”Bot.bot
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
OrderBot.toBot
instLE
Preorder.toLE
PartialOrder.toPreorder
orderBot
instZero
β€”β€”
coe_tsub πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instFunLike
tsub
Pi.instSub
β€”β€”
disjoint_iff πŸ“–mathematicalβ€”Disjoint
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
partialorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
orderBot
Finset
Finset.partialOrder
Finset.instOrderBot
support
β€”disjoint_iff
bot_eq_zero
support_eq_empty
support_inf
instCanonicallyOrderedAddOfAddLeftMono πŸ“–mathematicalβ€”CanonicallyOrderedAdd
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAdd
instLE
Preorder.toLE
PartialOrder.toPreorder
β€”ext
add_tsub_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
le_add_self
le_self_add
instPosSMulMono πŸ“–mathematicalβ€”PosSMulMono
Finsupp
SMulZeroClass.toSMul
instZero
smulZeroClass
preorder
β€”PosSMulMono.lift
Pi.instPosSMulMono
coe_le_coe
coe_smul
instPosSMulReflectLE πŸ“–mathematicalβ€”PosSMulReflectLE
Finsupp
SMulZeroClass.toSMul
instZero
smulZeroClass
preorder
β€”PosSMulReflectLE.lift
Pi.instPosSMulReflectLE
coe_le_coe
coe_smul
instPosSMulStrictMono πŸ“–mathematicalβ€”PosSMulStrictMono
Finsupp
SMulZeroClass.toSMul
instZero
smulZeroClass
SMulWithZero.toSMulZeroClass
PartialOrder.toPreorder
preorder
β€”PosSMulStrictMono.lift
Pi.instPosSMulStrictMono
coe_le_coe
coe_smul
instSMulPosMono πŸ“–mathematicalβ€”SMulPosMono
Finsupp
SMulZeroClass.toSMul
instZero
smulZeroClass
preorder
β€”SMulPosMono.lift
Pi.instSMulPosMono
coe_le_coe
coe_smul
coe_zero
instSMulPosReflectLE πŸ“–mathematicalβ€”SMulPosReflectLE
Finsupp
SMulZeroClass.toSMul
instZero
smulZeroClass
preorder
β€”SMulPosReflectLE.lift
Pi.instSMulPosReflectLE
coe_le_coe
coe_smul
coe_zero
instSMulPosReflectLT πŸ“–mathematicalβ€”SMulPosReflectLT
Finsupp
SMulZeroClass.toSMul
instZero
smulZeroClass
SMulWithZero.toSMulZeroClass
PartialOrder.toPreorder
preorder
β€”SMulPosReflectLT.lift
Pi.instSMulPosReflectLT
coe_le_coe
coe_smul
coe_zero
instSMulPosStrictMono πŸ“–mathematicalβ€”SMulPosStrictMono
Finsupp
SMulZeroClass.toSMul
instZero
smulZeroClass
SMulWithZero.toSMulZeroClass
PartialOrder.toPreorder
preorder
β€”SMulPosStrictMono.lift
Pi.instSMulPosStrictMono
coe_le_coe
coe_smul
coe_zero
isOrderedAddMonoid πŸ“–mathematicalβ€”IsOrderedAddMonoid
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
partialorder
β€”add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
isOrderedCancelAddMonoid πŸ“–mathematicalβ€”IsOrderedCancelAddMonoid
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
partialorder
β€”isOrderedAddMonoid
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
le_of_add_le_add_left
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
IsCancelAdd.toIsLeftCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
IsOrderedCancelAddMonoid.toAddLeftReflectLT
le_iff πŸ“–mathematicalβ€”Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instLE
Preorder.toLE
PartialOrder.toPreorder
DFunLike.coe
instFunLike
β€”le_iff'
Finset.Subset.refl
le_iff' πŸ“–mathematicalFinset
Finset.instHasSubset
support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finsupp
instLE
Preorder.toLE
PartialOrder.toPreorder
DFunLike.coe
instFunLike
β€”zero_le
notMem_support_iff
mapDomain_mono πŸ“–mathematicalβ€”Monotone
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
preorder
PartialOrder.toPreorder
mapDomain
β€”sum_le_sum_index
isOrderedAddMonoid
single_mono
single_zero
mapDomain_nonneg πŸ“–mathematicalFinsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instLE
Preorder.toLE
PartialOrder.toPreorder
instZero
mapDomainβ€”mapDomain_zero
mapDomain_mono
mapDomain_nonpos πŸ“–mathematicalFinsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instLE
Preorder.toLE
PartialOrder.toPreorder
instZero
mapDomainβ€”mapDomain_zero
mapDomain_mono
orderedSub πŸ“–mathematicalβ€”OrderedSub
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instLE
Preorder.toLE
PartialOrder.toPreorder
instAdd
tsub
β€”tsub_le_iff_right
single_le_iff πŸ“–mathematicalβ€”Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instLE
Preorder.toLE
PartialOrder.toPreorder
single
DFunLike.coe
instFunLike
β€”le_iff'
support_single_subset
single_eq_same
single_le_single πŸ“–mathematicalβ€”Finsupp
instLE
Preorder.toLE
single
β€”Pi.single_le_single
single_mono πŸ“–mathematicalβ€”Monotone
Finsupp
preorder
single
β€”single_le_single
single_nonneg πŸ“–mathematicalβ€”Finsupp
instLE
Preorder.toLE
instZero
single
β€”Pi.single_nonneg
single_nonpos πŸ“–mathematicalβ€”Finsupp
instLE
Preorder.toLE
single
instZero
β€”Pi.single_nonpos
single_tsub πŸ“–mathematicalβ€”single
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finsupp
tsub
β€”ext
eq_or_ne
tsub_apply
single_eq_same
single_eq_of_ne
tsub_self
sub_add_single_one_cancel πŸ“–mathematicalβ€”Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
tsub
Nat.instAddCommMonoid
Nat.instPartialOrder
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
single
β€”Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
sub_single_one_add
add_tsub_cancel_right
orderedSub
addLeftReflectLE
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
sub_single_one_add πŸ“–mathematicalβ€”Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
tsub
Nat.instAddCommMonoid
Nat.instPartialOrder
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
single
β€”tsub_add_eq_add_tsub
CanonicallyOrderedAdd.toExistsAddOfLE
instCanonicallyOrderedAddOfAddLeftMono
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
isOrderedAddMonoid
orderedSub
addLeftReflectLE
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
single_le_iff
subset_support_tsub πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
Finset.instSDiff
support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finsupp
tsub
β€”tsub_zero
sum_le_sum πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
DFunLike.coe
Finsupp
instFunLike
sumβ€”Finset.sum_le_sum
IsOrderedAddMonoid.toAddLeftMono
sum_le_sum_index πŸ“–mathematicalFinsupp
instLE
Preorder.toLE
Monotone
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
sumβ€”sum_of_support_subset
Finset.subset_union_left
Finset.subset_union_right
Finset.sum_le_sum
IsOrderedAddMonoid.toAddLeftMono
sum_nonneg πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
Finsupp
instFunLike
sumβ€”Finset.sum_nonneg
IsOrderedAddMonoid.toAddLeftMono
sum_nonneg' πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
Finsupp
instFunLike
sumβ€”sum_nonneg
sum_nonpos πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
DFunLike.coe
Finsupp
instFunLike
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
sumβ€”Finset.sum_nonpos
IsOrderedAddMonoid.toAddLeftMono
sum_pos πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
Finsupp
instFunLike
sumβ€”Finset.sum_pos
sum_pos' πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
Finsupp
instFunLike
Finset
Finset.instMembership
support
Preorder.toLT
sumβ€”Finset.sum_pos'
support_inf πŸ“–mathematicalβ€”support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finsupp
SemilatticeInf.toMin
semilatticeInf
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Finset
Finset.instInter
β€”Finset.ext
support_mono πŸ“–mathematicalFinsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instLE
Preorder.toLE
PartialOrder.toPreorder
Finset
Finset.instHasSubset
support
β€”support_monotone
support_monotone πŸ“–mathematicalβ€”Monotone
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset
preorder
PartialOrder.toPreorder
Finset.partialOrder
support
β€”mem_support_iff
pos_iff_ne_zero
LT.lt.trans_le
support_sup πŸ“–mathematicalβ€”support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finsupp
SemilatticeSup.toMax
semilatticeSup
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Finset
Finset.instUnion
β€”Finset.ext
support_tsub πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finsupp
tsub
β€”β€”
tsub_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instFunLike
tsub
β€”β€”

---

← Back to Index