π Source: Mathlib/Data/Finsupp/Order.lean
decidableLE
decidableLT
orderBot
tsub
addLeftReflectLE
add_eq_zero_iff
add_sub_single_one
bot_eq_zero
coe_tsub
disjoint_iff
instCanonicallyOrderedAddOfAddLeftMono
instPosSMulMono
instPosSMulReflectLE
instPosSMulStrictMono
instSMulPosMono
instSMulPosReflectLE
instSMulPosReflectLT
instSMulPosStrictMono
isOrderedAddMonoid
isOrderedCancelAddMonoid
le_iff
le_iff'
mapDomain_mono
mapDomain_nonneg
mapDomain_nonpos
orderedSub
single_le_iff
single_le_single
single_mono
single_nonneg
single_nonpos
single_tsub
sub_add_single_one_cancel
sub_single_one_add
subset_support_tsub
sum_le_sum
sum_le_sum_index
sum_nonneg
sum_nonneg'
sum_nonpos
sum_pos
sum_pos'
support_inf
support_mono
support_monotone
support_sup
support_tsub
tsub_apply
MvPowerSeries.coeff_mul_monomial
MvPowerSeries.coeff_monomial_mul
MvPolynomial.coeff_monomial_mul'
MvPowerSeries.coeff_trunc'
MvPowerSeries.coeff_truncFun'
MvPolynomial.coeff_mul_monomial'
MvPowerSeries.coeff_inv
MvPowerSeries.coeff_inv_aux
MvPowerSeries.coeff_trunc
MvPowerSeries.coeff_truncFun
MvPowerSeries.coeff_invOfUnit
card_Iic
card_Iio
MonomialOrder.sPolynomial_leadingTerm_mul'
MvPolynomial.coeff_X_mul'
MvPolynomial.mkDerivationβ_monomial
Nat.dvd_iff_div_factorization_eq_tsub
MonomialOrder.sPolynomial_def
MvPolynomial.mkDerivation_monomial
MvPolynomial.coeff_mul_X'
MonomialOrder.sPolynomial_monomial_mul
MvPolynomial.pderiv_monomial
Nat.factorization_div
MonomialOrder.sPolynomial_monomial_mul'
weight_sub_single_add
MonomialOrder.sPolynomial_mul_monomial
MonomialOrder.sPolynomial_leadingTerm_mul
AddLeftReflectLE
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAdd
instLE
Preorder.toLE
PartialOrder.toPreorder
le_of_add_le_add_left
instZero
Unique.instSubsingleton
MulZeroClass.toZero
Nat.instMulZeroClass
Nat.instAddMonoid
Nat.instAddCommMonoid
Nat.instPartialOrder
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
single
add_tsub_assoc_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Bot.bot
OrderBot.toBot
DFunLike.coe
instFunLike
Pi.instSub
Disjoint
partialorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Finset
Finset.partialOrder
Finset.instOrderBot
support
support_eq_empty
CanonicallyOrderedAdd
ext
add_tsub_cancel_of_le
le_add_self
le_self_add
PosSMulMono
SMulZeroClass.toSMul
smulZeroClass
preorder
PosSMulMono.lift
Pi.instPosSMulMono
coe_le_coe
coe_smul
PosSMulReflectLE
PosSMulReflectLE.lift
Pi.instPosSMulReflectLE
PosSMulStrictMono
SMulWithZero.toSMulZeroClass
PosSMulStrictMono.lift
Pi.instPosSMulStrictMono
SMulPosMono
SMulPosMono.lift
Pi.instSMulPosMono
coe_zero
SMulPosReflectLE
SMulPosReflectLE.lift
Pi.instSMulPosReflectLE
SMulPosReflectLT
SMulPosReflectLT.lift
Pi.instSMulPosReflectLT
SMulPosStrictMono
SMulPosStrictMono.lift
Pi.instSMulPosStrictMono
IsOrderedAddMonoid
instAddCommMonoid
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedCancelAddMonoid
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
IsCancelAdd.toIsLeftCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
IsOrderedCancelAddMonoid.toAddLeftReflectLT
Finset.Subset.refl
Finset.instHasSubset
zero_le
notMem_support_iff
Monotone
mapDomain
single_zero
mapDomain_zero
OrderedSub
tsub_le_iff_right
support_single_subset
single_eq_same
Pi.single_le_single
Pi.single_nonneg
Pi.single_nonpos
eq_or_ne
single_eq_of_ne
tsub_self
add_tsub_cancel_right
tsub_add_eq_add_tsub
Finset.instSDiff
tsub_zero
sum
Finset.sum_le_sum
sum_of_support_subset
Finset.subset_union_left
Finset.subset_union_right
Finset.sum_nonneg
Finset.sum_nonpos
Preorder.toLT
Finset.sum_pos
Finset.instMembership
Finset.sum_pos'
SemilatticeInf.toMin
semilatticeInf
Finset.instInter
Finset.ext
mem_support_iff
pos_iff_ne_zero
LT.lt.trans_le
SemilatticeSup.toMax
semilatticeSup
Lattice.toSemilatticeSup
Finset.instUnion
---
β Back to Index