single π | CompOp | 412 mathmath: zero_update, MvPolynomial.mul_X_divMonomial, Module.Relations.Solution.ofΟ'_var, Algebra.Presentation.differentials.commββ_single, single_injective, List.toFinsupp_eq_sum_mapIdx_single, groupHomology.dββ_single_one, Rep.diagonalSuccIsoFree_inv_hom_single, single_eq_indicator, MvPolynomial.coeff_X_mul', singleAddHom_apply, supportedEquivFinsupp_symm_single, groupHomology.dββ_single, MvPolynomial.X_pow_eq_monomial, KaehlerDifferential.mvPolynomialBasis_repr_D_X, MonomialOrder.degree_X, single_eq_single_iff, Ordinal.CNF.coeff_zero_left, Representation.ofCoinvariantsTprodLeftRegular_mk_tmul_single, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_left, MvPowerSeries.coeff_X_pow, List.toFinsupp_cons_eq_single_add_embDomain, Rep.diagonalHomEquiv_symm_apply, single_eq_same, groupHomology.mem_cyclesβ_iff, MvPowerSeries.X_pow_eq, groupHomology.single_isCycleβ_iff_inv, SkewMonoidAlgebra.toFinsupp_eq_single_one_one_iff, support_single_add_single, sum_single_add_single, update_eq_add_single, MvPolynomial.scalarRTensor_apply_X_tmul_apply, add_sub_single_one, equivMapDomain_single, Algebra.Presentation.differentials.homβ_single, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_right, Lex.single_strictAnti, single_smul, Rep.linearization_single, Nat.Prime.factorization_pow, groupHomology.dββ_single_one_thd, eq_single_iff, SkewMonoidAlgebra.toFinsupp_single, finsuppTensorFinsupp'_symm_single_eq_tmul_single_one, Rep.finsuppToCoinvariantsTensorFree_single, Module.Relations.Solution.IsPresentation.linearEquiv_symm_var, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_single, Module.Basis.repr_algebraMap, univ_sum_single_apply', sum_single_index, AddEquiv.finsuppUnique_symm, MvPowerSeries.coeff_X, Representation.ofMulAction_single, groupHomology.single_one_snd_sub_single_one_fst_mem_boundariesβ, MvPolynomial.esymmAlgHomMonomial_single, comapSMul_single, groupHomology.dββ_single_inv_mul_Ο_add_single, LinearEquiv.finsuppUnique_symm_apply, Rep.diagonalSuccIsoFree_inv_hom_single_single, LinearIndependent.repr_eq_single, supported_eq_span_single, support_add_single, Pi.basis_repr_single, isPrimePow_iff_factorization_eq_single, MvPowerSeries.coeff_index_single_X, Module.Basis.sumQuot_repr_left, embDomain_single, PiTensorProduct.ofFinsuppEquiv'_tprod_single, single_eq_zero, Module.Relations.Solution.ofQuotient_var, TensorProduct.finsuppScalarRight_apply_tmul, MvPowerSeries.X_def, LieAlgebra.LoopAlgebra.toFinsupp_symm_single, update_eq_single_add, DegLex.single_lt_iff, MvPolynomial.single_eq_monomial, finsuppTensorFinsupp'_single_tmul_single, single_eq_of_ne, weight_single, Rep.coindVEquiv_symm_apply_coe, antidiagonal_single, MvPolynomial.coeff_X, single_sub, sub_add_single_one_cancel, PiTensorProduct.ofFinsuppEquiv_tprod_single, unique_single, groupHomology.single_one_fst_sub_single_one_snd_mem_boundariesβ, finsuppTensorFinsuppLid_symm_single_smul, MvPolynomial.scalarRTensor_apply_tmul, KaehlerDifferential.kerTotal_mkQ_single_algebraMap_one, finsuppTensorFinsupp'_symm_single_mul, MvPolynomial.C_mul_X_eq_monomial, MvPowerSeries.coeff_index_single_self_X, groupHomology.dββ_single_inv_self_Ο_sub_self_inv, groupHomology.chainsMap_f_single, TensorProduct.finsuppLeft_symm_apply_single, PiTensorProduct.ofFinsuppEquiv_symm_single_tprod, Module.Basis.reindexRange_repr_self, single_eq_of_ne', single_apply_left, Module.Basis.repr_eq_iff, MvPolynomial.coeff_X_pow, KaehlerDifferential.kerTotal_mkQ_single_add, HahnSeries.SummableFamily.embDomain_succ_smul_powers, MvPolynomial.rTensor_apply_X_tmul, groupHomology.single_one_fst_sub_single_one_fst_mem_boundariesβ, frange_single, Nat.Prime.factorization, toFreeAbelianGroup_single, single_eq_update, MvPolynomial.eq_divMonomial_single, Module.Presentation.finsupp_var, MvPolynomial.eq_modMonomial_single_iff, MvPolynomial.rTensor_apply_tmul, FiniteDimensional.basisSingleton_repr_apply, mapDomain_single, lsum_single, linearEquivFunOnFinite_single, single_finset_sum, MvPolynomial.mkDerivationβ_monomial, support_single_ne_zero, CategoryTheory.Free.single_comp_single, finsuppTensorFinsupp_single, extendDomain_single, DegLex.single_antitone, Lex.single_lt_iff, MvPolynomial.coeff_single_X, erase_single_ne, single_eq_set_indicator, filter_eq_sum, finsuppTensorFinsupp'_symm_single_eq_single_one_tmul, erase_eq_sub_single, CategoryTheory.Free.embedding_map, MvPolynomial.coeff_single_X_pow, support_subset_singleton, MvPolynomial.dvd_X_mul_iff, MonomialOrder.degree_X_sub_C, curry_single, Rep.freeLiftLEquiv_apply, Module.Basis.repr_symm_single, Representation.finsuppToCoinvariants_single_mk, finsuppTensorFinsuppRid_symm_single_smul, uncurry_single, Representation.finsupp_single, isCompl_range_lmapDomain_span, Module.Relations.map_single, single_left_injective, DFinsupp.toFinsupp_single, MvPolynomial.coeff_sumSMulX, single_mul, KaehlerDifferential.derivationQuotKerTotal_apply, linearIndependent_single_of_ne_zero, FreeAbelianGroup.toFinsupp_of, MvPolynomial.supDegree_esymm, Module.Relations.Quotient.linearMap_ext_iff, Rep.coindFunctorIso_inv_app_hom_hom_apply_coe, Rep.linearization_Ξ·_hom_apply, MvPolynomial.monomial_add_single, smul_single', single_le_single, update_eq_single_add_erase, groupHomology.H1AddEquivOfIsTrivial_single, MvPolynomial.eq_modMonomial_single, single_mono, card_support_le_one', MonomialOrder.degLex_single_le_iff, MvPolynomial.support_mul_X, support_eq_singleton, single_nonpos, KaehlerDifferential.kerTotal_map, univ_sum_single_apply, MvPolynomial.support_esymm', TensorProduct.finsuppScalarRight_symm_apply_single, List.toFinsupp_concat_eq_toFinsupp_add_single, groupHomology.single_isCycleβ_iff, groupHomology.inhomogeneousChains.d_single, MvPolynomial.mkDerivation_monomial, linearCombination_single, Module.Basis.reindexFinsetRange_repr_self, Representation.coind'_apply_apply, single_tsub, Module.Basis.repr_symm_single_one, groupHomology.isBoundaryβ_iff, AddMonoidAlgebra.GradesBy.decompose_single, Multiset.toFinsupp_singleton, coe_basis, single_apply_eq_zero, Module.Relations.solutionFinsupp_var, counit_single, RootPairing.Base.toCoweightBasis_repr_coroot, single_swap, groupHomology.single_isCycleβ_iff, filter_single_of_neg, MvPolynomial.modMonomial_X, Rep.standardComplex.d_of, MvPolynomial.coeff_mul_X', MvPolynomial.coeff_mul_X, SkewMonoidAlgebra.toFinsupp_one, Rep.diagonalSuccIsoTensorTrivial_hom_hom_single, finsuppTensorFinsuppRid_single_tmul_single, LieAlgebra.LoopAlgebra.toFinsupp_single_tmul, llift_symm_apply, apply_single', AddMonoidAlgebra.single_mem_grade, MultilinearMap.freeFinsuppEquiv_apply, groupHomology.dββ_single_one_fst, Rep.coind'_ext_iff, MvPolynomial.X_dvd_iff_modMonomial_eq_zero, finsuppLEquivDirectSum_single, some_single_none, MvPolynomial.X_mul_divMonomial, comul_single, groupHomology.dββ_single_self_inv_Ο_sub_inv_self, groupHomology.single_Ο_self_add_single_inv_mem_boundariesβ, support_single_add_single_subset, groupHomology.H1ToTensorOfIsTrivial_H1Ο_single, DegLex.single_le_iff, coe_basisSingleOne, indicator_eq_sum_attach_single, support_single_add, exteriorPower.presentation_relation, MvPolynomial.pderiv_monomial_single, erase_add_single, KaehlerDifferential.kerTotal_mkQ_single_mul, linearIndependent_single_iff, MultilinearMap.freeFinsuppEquiv_single, Rep.leftRegularHom_hom_single, MvPolynomial.support_X_pow, MvPolynomial.rTensor_symm_apply_single, update_eq_sub_add_single, optionElim_zero, Representation.free_single_single, MvPolynomial.pderiv_monomial, lcongr_symm_single, Module.Basis.apply_eq_iff, sigmaFinsuppEquivDFinsupp_single, Ordinal.CNF.coeff_one_left, single_add_erase, MvPolynomial.esymmAlgHomMonomial_single_one, Module.Basis.coe_ofRepr, support_single_disjoint, AddMonoidAlgebra.grade.decompose_single, single_add, MvPolynomial.X_mul_modMonomial, Finset.sum_single_ite, List.toFinsupp_singleton, mem_support_single, univ_sum_single, lcongr_single, SkewMonoidAlgebra.ofFinsupp_eq_one, KaehlerDifferential.kerTotal_mkQ_single_smul, MvPolynomial.coeff_X', groupHomology.dββ_single_one_fst, add_closure_setOf_eq_single, Representation.coinvariantsTprodLeftRegularLEquiv_symm_apply, TensorProduct.finsuppScalarLeft_apply_tmul, apply_single, degree_single, card_support_eq_one', linearEquivFunOnFinite_symm_single, range_single_subset, single_multiset_sum, groupHomology.single_one_snd_sub_single_one_snd_mem_boundariesβ, unique_single_eq_iff, Rep.leftRegularHomEquiv_symm_single, Lex.single_antitone, Algebra.TensorProduct.basis_repr_symm_apply, Submodule.mulLeftMap_apply_single, single_mem_span_single, single_apply_mem, CategoryTheory.Free.lift_map_single, filter_single_of_pos, MvPolynomial.esymm_eq_sum_monomial, range_single_one, support_subset_singleton', finsuppTensorFinsupp_symm_single, single_le_iff, lift_symm_apply, Rep.FiniteCyclicGroup.homResolutionIso_hom_f_hom_apply, KaehlerDifferential.mvPolynomialBasis_repr_D, restrictSupportEquiv_symm_single, single_add_single_eq_single_add_single, RootPairing.Base.toWeightBasis_repr_root, MvPolynomial.C_mul_X_pow_eq_monomial, Polynomial.derivativeFinsupp_one, liftAddHom_apply_single, TensorProduct.finsuppRight_symm_apply_single, single_left_inj, KaehlerDifferential.mvPolynomialBasis_repr_comp_D, finsuppTensorFinsuppLid_single_tmul_single, Module.Relations.Solution.ofΟ_var, single_apply, Representation.leftRegular_norm_apply, weight_sub_single_add, Representation.coinvariantsToFinsupp_mk_single, single_add_apply, MvPolynomial.support_esymm'', TensorProduct.finsuppLeft_apply_tmul, groupHomology.dββ_single_one_snd, groupHomology.dββ_single_one_snd, exteriorPower.basis_repr, indicator_eq_sum_single, MvPolynomial.divMonomial_add_modMonomial_single, support_single_subset, Rep.leftRegularHomEquiv_apply, SkewMonoidAlgebra.ofFinsupp_single, Colex.single_le_iff, linearIndependent_single, groupHomology.single_mem_cyclesβ_of_mem_invariants, liftAddHom_symm_apply_apply, MvPolynomial.coeff_X_mul, GroupAlgebra.mul_average_left, coe_univ_sum_single, KaehlerDifferential.mvPolynomialBasis_repr_symm_single, AddMonoidAlgebra.decomposeAux_single, some_single_some, groupHomology.dββ_single_inv, groupHomology.mkH1OfIsTrivial_apply, span_single_image, Ordinal.CNF.coeff_of_le_one, equivFunOnFinite_symm_single, toMultiset_single, single_neg, toDFinsupp_single, MvPolynomial.scalarRTensor_symm_apply_single, zipWith_single_single, range_lmapDomain, Rep.freeLift_hom_single_single, Rep.leftRegularTensorTrivialIsoFree_hom_hom_single_tmul_single, groupHomology.single_one_mem_boundariesβ, single_sum, MonomialOrder.degree_X_add_C, MvPolynomial.mul_X_modMonomial, Rep.diagonalHomEquiv_apply, groupHomology.dββ_single, SkewMonoidAlgebra.ofFinsupp_one, embSigma_single, card_support_le_one, single_eq_pi_single, groupHomology.single_inv_Ο_self_add_single_mem_boundariesβ, MonomialOrder.degLex_single_lt_iff, MvPolynomial.modMonomial_add_divMonomial_single, equivFunOnFinite_single, smul_single_one, Colex.single_lt_iff, sub_single_one_add, single_zero, groupHomology.single_mem_cyclesβ_iff, TensorProduct.finsuppScalarLeft_symm_apply_single, equivFunOnFinite_symm_eq_sum, MvPolynomial.X_divMonomial, single_nonneg, Rep.diagonalSuccIsoFree_hom_hom_single, Lex.single_le_iff, AddMonoidAlgebra.single_mem_gradeBy, erase_single, Rep.free_ext_iff, Module.Basis.repr_eq_iff', smul_single, AList.singleton_lookupFinsupp, Module.End.ringEquivEndFinsupp_symm_apply_apply, sum_single, groupHomology.single_isCycleβ_of_mem_fixedPoints, MvPolynomial.support_esymm, Module.Presentation.tautologicalRelations_relation, mapRange_single, prod_single_index, nsmul_single_one_image, groupHomology.H1AddEquivOfIsTrivial_symm_tmul, groupHomology.single_mem_cyclesβ_iff, groupHomology.dββ_single_Ο_add_single_inv_mul, sum_eq_one_iff, single_mem_supported, Rep.linearization_map_hom_single, MvPolynomial.support_X, toMultiset_sum_single, KaehlerDifferential.kerTotal_map', Rep.barComplex.d_single, Module.Presentation.tautological_relation, MvPolynomial.monomial_single_add, Module.Basis.repr_self, MvPolynomial.support_X_mul, exteriorPower.presentation.relations_relation, lcomapDomain_eq_linearProjOfIsCompl, support_eq_singleton', TensorProduct.finsuppRight_apply_tmul, groupHomology.isBoundaryβ_iff, Set.indicator_singleton_eq, Rep.coinvariantsTensorFreeToFinsupp_mk_tmul_single, linearIndependent_single_one, Module.Relations.Solution.Ο_single, DegLex.single_strictAnti, Module.presentationFinsupp_var, domLCongr_single, groupHomology.single_mem_cyclesβ_iff_inv, groupHomology.dββ_single, lsingle_apply, MvPolynomial.vars_monomial_single, Colex.single_strictMono, Polynomial.derivativeFinsupp_C, TensorProduct.finsuppRight_tmul_single, Submodule.mulRightMap_apply_single, card_support_eq_one, Polynomial.derivativeFinsupp_X, finsuppLEquivDirectSum_symm_lof, GroupAlgebra.mul_average_right, Rep.leftRegularTensorTrivialIsoFree_inv_hom_single_single, Polynomial.homogenize_monomial, single_of_single_apply, update_eq_erase_add_single, MonomialOrder.degree_X_le_single, KaehlerDifferential.kerTotal_mkQ_single_algebraMap
|