Documentation Verification Report

OfMap

📁 Source: Mathlib/Data/Fintype/OfMap.lean

Statistics

MetricCount
DefinitionsinstEmpty, instPEmpty, ofBijective, ofEquiv, ofInjective, ofIsEmpty, ofList, ofMultiset, ofSubsingleton, ofSurjective
10
Theoremsuniv_ofIsEmpty, univ_ofSubsingleton
2
Total12

Fintype

Definitions

NameCategoryTheorems
instEmpty 📖CompOp
2 mathmath: univ_empty, card_empty
instPEmpty 📖CompOp
105 mathmath: HomotopicalAlgebra.FibrantObject.instIsIsoFunctorWhiskerRightHoCatιCompResolutionNatTransOfIsLocalizationWeakEquivalences, HomotopicalAlgebra.BifibrantObject.inverts_iff_factors, HomotopicalAlgebra.BifibrantObject.HoCat.ιCofibrantObject_obj, HomotopicalAlgebra.CofibrantObject.homRel_equivalence_of_isFibrant_tgt, HomotopicalAlgebra.CofibrantObject.instIsLocalizedEquivalenceHoCatWeakEquivalencesToHoCatLocalizerMorphism, HomotopicalAlgebra.CofibrantObject.toHoCat_map_eq_iff, HomotopicalAlgebra.CofibrantObject.instWeakEquivalenceBifibrantObjectBifibrantResolutionMap, HomotopicalAlgebra.FibrantObject.instIsLocalizedEquivalenceHoCatWeakEquivalencesToHoCatLocalizerMorphism, CategoryTheory.Functor.EssImageSubcategory.associator_inv_def, CategoryTheory.Functor.EssImageSubcategory.associator_hom_def, HomotopicalAlgebra.FibrantObject.instIsLocalizationCompHoCatToHoCatWeakEquivalences, HomotopicalAlgebra.BifibrantObject.HoCat.homEquivRight_apply, CategoryTheory.FinitaryExtensive.isPullback_initial_to_binaryCofan, HomotopicalAlgebra.BifibrantObject.HoCat.homEquivLeft_symm_apply, HomotopicalAlgebra.CofibrantObject.bifibrantResolutionMap_fac', HomotopicalAlgebra.FibrantObject.toHoCat_map_eq_iff, HomotopicalAlgebra.BifibrantObject.HoCat.homEquivLeft_apply, HomotopicalAlgebra.FibrantObject.weakEquivalence_toHoCat_map_iff, HomotopicalAlgebra.FibrantObject.homRel_iff_leftHomotopyRel, HomotopicalAlgebra.FibrantObject.instHasRightResolutionsArrowArrowWeakEquivalencesArrowLocalizerMorphism, CategoryTheory.Over.preservesTerminalIso_pullback, HomotopicalAlgebra.BifibrantObject.toHoCat_map_eq, HomotopicalAlgebra.CofibrantObject.instHasLeftResolutionsArrowArrowWeakEquivalencesArrowLocalizerMorphism, HomotopicalAlgebra.BifibrantObject.instIsIsoHoCatMapToHoCatOfWeakEquivalence, HomotopicalAlgebra.BifibrantObject.instCongruenceHomRel, card_pempty, CategoryTheory.Functor.EssImageSubcategory.tensor_obj, HomotopicalAlgebra.CofibrantObject.instIsFibrantObjιBifibrantObjectιCofibrantObject, HomotopicalAlgebra.CofibrantObject.toHoCat_obj_surjective, HomotopicalAlgebra.CofibrantObject.HoCat.bifibrantResolution'_obj, HomotopicalAlgebra.FibrantObject.instWeakEquivalenceHoCatAppιCompResolutionNatTrans, HomotopicalAlgebra.FibrantObject.localizerMorphism_functor, HomotopicalAlgebra.FibrantObject.instFullHoCatToHoCat, HomotopicalAlgebra.BifibrantObject.instIsLocalizationHoCatToHoCatWeakEquivalences, HomotopicalAlgebra.FibrantObject.instIsLocalizationCompιWeakEquivalences, HomotopicalAlgebra.CofibrantObject.instIsCofibrantObjFunctorWeakEquivalencesLocalizerMorphism, HomotopicalAlgebra.CofibrantObject.bifibrantResolutionMap_fac, HomotopicalAlgebra.CofibrantObject.exists_bifibrant_map, univ_pempty, HomotopicalAlgebra.CofibrantObject.instFullHoCatToHoCat, HomotopicalAlgebra.BifibrantObject.toHoCat_obj_surjective, HomotopicalAlgebra.CofibrantObject.instIsConnectedLeftResolutionWeakEquivalencesLocalizerMorphism, HomotopicalAlgebra.CofibrantObject.instIsCofibrantResolutionObj, HomotopicalAlgebra.FibrantObject.toHoCat_map_eq, HomotopicalAlgebra.FibrantObject.instIsConnectedRightResolutionWeakEquivalencesLocalizerMorphism, HomotopicalAlgebra.CofibrantObject.instIsLocalizationCompHoCatToHoCatWeakEquivalences, HomotopicalAlgebra.CofibrantObject.instIsLeftDerivabilityStructureWeakEquivalencesLocalizerMorphism, HomotopicalAlgebra.FibrantObject.HoCat.resolutionObj_hom_ext, HomotopicalAlgebra.CofibrantObject.instIsIsoFunctorWhiskerRightHoCatιCompResolutionNatTransOfIsLocalizationWeakEquivalences, HomotopicalAlgebra.BifibrantObject.HoCat.homEquivRight_symm_apply, HomotopicalAlgebra.FibrantObject.instIsStableUnderPrecompHomRel, HomotopicalAlgebra.CofibrantObject.HoCat.resolutionObj_hom_ext, Algebra.PreSubmersivePresentation.ofBijectiveAlgebraMap_jacobian, CategoryTheory.Functor.EssImageSubcategory.toUnit_def, HomotopicalAlgebra.BifibrantObject.instIsStableUnderPostcompHomRel, HomotopicalAlgebra.BifibrantObject.HoCat.ιFibrantObject_obj, CategoryTheory.FinitaryExtensive.isPullback_initial_to_sigma_ι, HomotopicalAlgebra.CofibrantObject.HoCat.bifibrantResolution_map, HomotopicalAlgebra.FibrantObject.homRel_equivalence_of_isCofibrant_src, HomotopicalAlgebra.CofibrantObject.bifibrantResolutionMap_fac_assoc, HomotopicalAlgebra.BifibrantObject.homRel_iff_leftHomotopyRel, HomotopicalAlgebra.CofibrantObject.HoCat.adjCounitIso_inv_app, HomotopicalAlgebra.CofibrantObject.HoCat.adjUnit_app, HomotopicalAlgebra.CofibrantObject.instWeakEquivalenceIBifibrantResolutionObj, CategoryTheory.Functor.Monoidal.ε_of_cartesianMonoidalCategory, HomotopicalAlgebra.CofibrantObject.HoCat.bifibrantResolution_obj, HomotopicalAlgebra.FibrantObject.instIsFibrantResolutionObj, HomotopicalAlgebra.BifibrantObject.toHoCat_map_eq_iff, HomotopicalAlgebra.FibrantObject.instHasQuotientWeakEquivalencesHomRel, HomotopicalAlgebra.CofibrantObject.instWeakEquivalenceWWeakEquivalences, HomotopicalAlgebra.FibrantObject.instWeakEquivalenceWWeakEquivalences, HomotopicalAlgebra.FibrantObject.HoCat.ιCompResolutionNatTrans_app, HomotopicalAlgebra.CofibrantObject.localizerMorphism_functor, HomotopicalAlgebra.CofibrantObject.instIsStableUnderPrecompHomRel, HomotopicalAlgebra.FibrantObject.toHoCat_obj_surjective, HomotopicalAlgebra.BifibrantObject.instIsStableUnderPrecompHomRel, HomotopicalAlgebra.CofibrantObject.factorsThroughLocalization, HomotopicalAlgebra.CofibrantObject.instWeakEquivalenceHoCatAppιCompResolutionNatTrans, HomotopicalAlgebra.CofibrantObject.instHasQuotientWeakEquivalencesHomRel, HomotopicalAlgebra.CofibrantObject.HoCat.ιCompResolutionNatTrans_app, HomotopicalAlgebra.FibrantObject.instIsFibrantObjFunctorWeakEquivalencesLocalizerMorphism, HomotopicalAlgebra.CofibrantObject.instIsLocalizationCompιWeakEquivalences, HomotopicalAlgebra.CofibrantObject.exists_bifibrant, HomotopicalAlgebra.CofibrantObject.HoCat.bifibrantResolution'_map, HomotopicalAlgebra.FibrantObject.factorsThroughLocalization, CategoryTheory.CartesianMonoidalCategory.preservesTerminalIso_id, HomotopicalAlgebra.CofibrantObject.weakEquivalence_toHoCat_map_iff, HomotopicalAlgebra.BifibrantObject.HoCat.ιCofibrantObject_map_toHoCat_map, HomotopicalAlgebra.BifibrantObject.homRel_iff_rightHomotopyRel, CategoryTheory.FinitaryExtensive.isPullback_initial_to, HomotopicalAlgebra.FibrantObject.instIsLocalizedEquivalenceWeakEquivalencesLocalizerMorphism, HomotopicalAlgebra.CofibrantObject.instWeakEquivalenceHomFullSubcategoryCofibrantObjectsIBifibrantResolutionObj, CategoryTheory.Functor.EssImageSubcategory.lift_def, HomotopicalAlgebra.FibrantObject.instIsRightDerivabilityStructureWeakEquivalencesLocalizerMorphism, HomotopicalAlgebra.CofibrantObject.HoCat.adjCounit'_app, HomotopicalAlgebra.BifibrantObject.instFullHoCatToHoCat, HomotopicalAlgebra.CofibrantObject.instIsStableUnderPostcompHomRel, HomotopicalAlgebra.CofibrantObject.instCofibrationHomFullSubcategoryCofibrantObjectsIBifibrantResolutionObj, HomotopicalAlgebra.FibrantObject.instIsStableUnderPostcompHomRel, HomotopicalAlgebra.CofibrantObject.homRel_iff_rightHomotopyRel, HomotopicalAlgebra.CofibrantObject.bifibrantResolutionMap_fac'_assoc, HomotopicalAlgebra.CofibrantObject.instIsLocalizedEquivalenceWeakEquivalencesLocalizerMorphism, HomotopicalAlgebra.CofibrantObject.toHoCat_map_eq, HomotopicalAlgebra.BifibrantObject.HoCat.ιFibrantObject_map_toHoCat_map, SSet.instFiniteInitial
ofBijective 📖CompOp
ofEquiv 📖CompOp
1 mathmath: ofEquiv_card
ofInjective 📖CompOp
ofIsEmpty 📖CompOp
2 mathmath: card_ofIsEmpty, univ_ofIsEmpty
ofList 📖CompOp
ofMultiset 📖CompOp
ofSubsingleton 📖CompOp
2 mathmath: card_ofSubsingleton, univ_ofSubsingleton
ofSurjective 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
univ_ofIsEmpty 📖mathematicalFinset.univ
ofIsEmpty
Finset
Finset.instEmptyCollection
univ_ofSubsingleton 📖mathematicalFinset.univ
ofSubsingleton
Finset
Finset.instSingleton

---

← Back to Index