Documentation Verification Report

Perm

πŸ“ Source: Mathlib/Data/Fintype/Perm.lean

Statistics

MetricCount
DefinitionsinstFintype, instFintype, instFintype, fintypePerm, permsOfFinset, permsOfList
6
Theoremscard_equiv, card_perm, card_perms_of_finset, length_permsOfList, mem_of_mem_permsOfList, mem_permsOfList_iff, mem_permsOfList_of_mem, mem_perms_of_finset_iff, nodup_permsOfList
9
Total15

AddEquiv

Definitions

NameCategoryTheorems
instFintype πŸ“–CompOpβ€”

Equiv

Definitions

NameCategoryTheorems
instFintype πŸ“–CompOp
34 mathmath: Matrix.det_apply, ContinuousMultilinearMap.alternatization_apply_apply, Perm.card_of_cycleType_mul_eq, AlternatingMap.domCoprod_coe, Fintype.card_perm, Perm.OnCycleFactors.kerParam_range_card, Fintype.card_equiv, Perm.card_of_cycleType_eq_zero_iff, MultilinearMap.domCoprod_alternization_coe, Finset.univ_perm_option, Perm.card_of_cycleType, ContinuousMultilinearMap.iteratedFDeriv_comp_diagonal, DomMulAct.stabilizer_card', MultilinearMap.alternatization_apply, Finset.univ_perm_fin_succ, two_mul_card_alternatingGroup, ContinuousMultilinearMap.alternatization_apply_toContinuousMultilinearMap, Matrix.det_mul_aux, HasFPowerSeriesWithinOnBall.iteratedFDerivWithin_eq_sum_of_completeSpace, MultilinearMap.alternatization_coe, HasFPowerSeriesOnBall.iteratedFDeriv_eq_sum_of_completeSpace, Matrix.det_apply', Perm.card_of_cycleType_singleton, AlternatingGroup.map_subtype_of_cycleType, Numbering.dens_prefixed, AlternatingMap.domCoprod_apply, Perm.ofSign_disjUnion, exteriorPower.toTensorPower_apply_ΞΉMulti, Fintype.card_numbering, DomMulAct.stabilizer_card, HasFPowerSeriesWithinOnBall.iteratedFDerivWithin_eq_sum, exists_eq_sum_perm_of_mem_doublyStochastic, HasFPowerSeriesOnBall.iteratedFDeriv_eq_sum, MultilinearMap.alternatization_def

Fintype

Theorems

NameKindAssumesProvesValidatesDepends On
card_equiv πŸ“–mathematicalβ€”card
Equiv
Equiv.instFintype
Nat.factorial
β€”card_perm
card_congr
card_perm πŸ“–mathematicalβ€”card
Equiv.Perm
Equiv.instFintype
Nat.factorial
β€”card_perms_of_finset
subsingleton

MulEquiv

Definitions

NameCategoryTheorems
instFintype πŸ“–CompOpβ€”

(root)

Definitions

NameCategoryTheorems
fintypePerm πŸ“–CompOpβ€”
permsOfFinset πŸ“–CompOp
2 mathmath: card_perms_of_finset, mem_perms_of_finset_iff
permsOfList πŸ“–CompOp
4 mathmath: length_permsOfList, mem_permsOfList_of_mem, mem_permsOfList_iff, nodup_permsOfList

Theorems

NameKindAssumesProvesValidatesDepends On
card_perms_of_finset πŸ“–mathematicalβ€”Finset.card
Equiv.Perm
permsOfFinset
Nat.factorial
β€”length_permsOfList
length_permsOfList πŸ“–mathematicalβ€”Equiv.Perm
permsOfList
Nat.factorial
β€”List.sum_replicate
add_comm
mem_of_mem_permsOfList πŸ“–β€”Equiv.Perm
permsOfList
β€”β€”eq_inv_mul_iff_mul_eq
Equiv.Perm.mul_apply
Equiv.swap_inv
Equiv.swap_apply_def
mem_permsOfList_iff πŸ“–mathematicalβ€”Equiv.Perm
permsOfList
β€”mem_of_mem_permsOfList
mem_permsOfList_of_mem
mem_permsOfList_of_mem πŸ“–mathematicalβ€”Equiv.Perm
permsOfList
β€”Equiv.ext
Equiv.injective
Equiv.swap_apply_right
mul_assoc
Equiv.Perm.mul_def
Equiv.swap_swap
Equiv.Perm.one_def
one_mul
mem_perms_of_finset_iff πŸ“–mathematicalβ€”Equiv.Perm
Finset
Finset.instMembership
permsOfFinset
β€”mem_permsOfList_iff
nodup_permsOfList πŸ“–mathematicalβ€”Equiv.Perm
permsOfList
β€”List.Nodup.of_cons
mem_of_mem_permsOfList
permsOfList.eq_2
List.nodup_append'
List.nodup_flatMap
List.Nodup.map
mul_left_cancel
LeftCancelSemigroup.toIsLeftCancelMul
Equiv.Perm.mul_apply
Equiv.swap_apply_left
List.Nodup.getElem_inj_iff
ne_of_lt
Equiv.apply_symm_apply
Equiv.injective
Equiv.swap_apply_right

---

← Back to Index