Documentation Verification Report

Sets

πŸ“ Source: Mathlib/Data/Fintype/Sets.lean

Statistics

MetricCount
Definitionsfintype, fintypeCoeSort, fintype, finsetEquivSet, finsetOrderIsoSet, fintype, fintype, fintype, decidableMemOfFintype, toFinset, fintype, finsetStx, precheckFinsetStx, setFintype
14
Theoremsattach_eq_univ, toFinset_coe, univ_eq_attach, coe_finsetEquivSet, coe_finsetOrderIsoSet, coe_finsetOrderIsoSet_symm, coe_image_univ, finsetEquivSet_apply, finsetEquivSet_symm_apply, finsetOrderIsoSet_toEquiv, univ_Prop, toFinset_nonempty_of_nonempty, coe_toFinset, disjoint_toFinset, filter_mem_univ_eq_toFinset, mem_toFinset, ssubset_toFinset, subset_toFinset, subsingleton_toFinset_iff, toFinset_compl, toFinset_congr, toFinset_diff, toFinset_empty, toFinset_eq_empty, toFinset_eq_univ, toFinset_image, toFinset_inj, toFinset_insert, toFinset_inter, toFinset_mono, toFinset_nonempty, toFinset_nontrivial, toFinset_ofFinset, toFinset_range, toFinset_setOf, toFinset_singleton, toFinset_ssubset, toFinset_ssubset_toFinset, toFinset_ssubset_univ, toFinset_strict_mono, toFinset_subset, toFinset_subset_toFinset, toFinset_subset_toFinset_of_subset, toFinset_symmDiff, toFinset_union, toFinset_univ, mem_image_univ_iff_mem_range
47
Total61

Finset

Definitions

NameCategoryTheorems
fintypeCoeSort πŸ“–CompOp
1 mathmath: univ_eq_attach

Theorems

NameKindAssumesProvesValidatesDepends On
attach_eq_univ πŸ“–mathematicalβ€”attach
univ
Finset
instMembership
Subtype.fintype
β€”β€”
toFinset_coe πŸ“–mathematicalβ€”Set.toFinset
SetLike.coe
Finset
instSetLike
β€”ext
Set.mem_toFinset
univ_eq_attach πŸ“–mathematicalβ€”univ
Finset
SetLike.instMembership
instSetLike
fintypeCoeSort
attach
β€”β€”

Finset.Subtype

Definitions

NameCategoryTheorems
fintype πŸ“–CompOp
102 mathmath: RootPairing.GeckConstruction.isSl2Triple, RootPairing.GeckConstruction.instHasTrivialRadical, RootPairing.GeckConstruction.instIsLieAbelianSubtypeMatrixSumMemFinsetSupportLieSubalgebraCartanSubalgebra, Finset.attach_eq_univ, RootPairing.GeckConstruction.h_mem_cartanSubalgebra, Finset.prod_eq_prod_extend, RootPairing.GeckConstruction.trace_h_eq_zero, Equiv.Perm.disjoint_ofSubtype_noncommPiCoprod, Submodule.mem_span_image_iff_exists_fun, MeasureTheory.integral_infinitePi_of_piFinset, Equiv.Perm.OnCycleFactors.kerParam_range_card, MeasureTheory.lintegral_restrict_infinitePi, MeasureTheory.volume_preserving_piFinsetUnion, RootPairing.GeckConstruction.mem_Ο‰ConjLieSubmodule_iff, LinearMap.trace_eq_matrix_trace_of_finset, CategoryTheory.Limits.CoproductsFromFiniteFiltered.liftToFinsetColimIso_aux_assoc, MeasureTheory.Measure.isProjectiveLimit_infinitePi, MeasureTheory.piContent_cylinder, RootPairing.GeckConstruction.cartanSubalgebra_eq_lieSpan, LinearMap.det_def, MeasureTheory.Measure.map_piSingleton, RootPairing.GeckConstruction.lie_h_e, MeasureTheory.Measure.pi_prod_map_IocProdIoc, Equiv.Perm.Basis.card_ofPermHom_support, MeasureTheory.isProjectiveMeasureFamily_pi, CategoryTheory.Limits.ProductsFromFiniteCofiltered.finiteSubproductsCocone_Ο€_app_eq_sum, RootPairing.GeckConstruction.trace_toEnd_eq_zero, LinearMap.det_eq_det_toMatrix_of_finset, Finset.prod_coe_sort, Finset.prod_apply_dite, RootPairing.GeckConstruction.span_range_h'_eq_top, MeasureTheory.Measure.pi_prod_map_IicProdIoc, finsetBasisOfTopLeSpanOfCardEqFinrank_repr_apply, Submodule.mem_span_finset', RootPairing.GeckConstruction.instIsLieAbelianSubtypeMatrixSumMemFinsetSupportLieSubalgebraLieAlgebraCartanSubalgebra', MeasureTheory.partialTraj_const, Finset.sum_pow_of_commute, Finset.centroid_univ, LieAlgebra.IsKilling.corootForm_rootSystem_eq_killing, RootPairing.GeckConstruction.Ο‰_mul_h, exists_orthonormalBasis, RootPairing.GeckConstruction.instIsIrreducible, Finset.inclusion_exclusion_card_biUnion, Equiv.Perm.Basis.ofPermHom_support, RootPairing.GeckConstruction.Ο‰ConjLieSubmodule_eq_top_iff, Finset.prod_dite_of_false, RootPairing.GeckConstruction.cartanSubalgebra_le_lieAlgebra, Equiv.Perm.OnCycleFactors.cycleType_kerParam_apply_apply, RootPairing.GeckConstruction.instIsTriangularizableSubtypeMatrixSumMemFinsetSupportLieSubalgebraLieAlgebraCartanSubalgebra'Forall, RootPairing.GeckConstruction.Ο‰Conj_invFun, Finset.prod_coe_sort_eq_attach, Nat.prod_pow_primeFactors_factorization, RootPairing.GeckConstruction.isNilpotent_f, Finset.sum_dite_of_false, RootPairing.GeckConstruction.lie_e_f_same, MeasureTheory.Measure.isProjectiveLimit_infinitePiNat, RootPairing.GeckConstruction.Ο‰_mul_Ο‰, RootPairing.GeckConstruction.f_lie_v_ne, RootPairing.GeckConstruction.Ο‰Conj_toFun, RootPairing.GeckConstruction.e_lie_v_ne, RootPairing.GeckConstruction.Ο‰_mul_e, RootPairing.GeckConstruction.isNilpotent_e, RootPairing.GeckConstruction.h_mem_lieAlgebra, Finset.inclusion_exclusion_sum_biUnion, OrthonormalBasis.span_apply, MeasureTheory.measurePreserving_piFinsetUnion, Finset.prod_dite, RootPairing.GeckConstruction.lie_h_f, RootPairing.GeckConstruction.Ο‰_mul_f, MeasureTheory.Measure.infinitePiNat_map_restrict, MeasureTheory.Measure.infinitePi_cylinder, Finset.attach_affineCombination_of_injective, MeasureTheory.partialTraj_const_restrictβ‚‚, RootPairing.GeckConstruction.lie_e_lie_f_apply, RootPairing.GeckConstruction.f_lie_v_same, Finset.sum_apply_dite, LinearMap.coe_det, Submonoid.mem_closure_finset', MeasureTheory.Measure.infinitePi_map_restrict, Finset.sum_dite_of_true, Equiv.Perm.CycleType.count_def, RootPairing.Base.cartanMatrixIn_mul_diagonal_eq, RootPairing.GeckConstruction.f_mem_lieAlgebra, RootPairing.GeckConstruction.e_mem_lieAlgebra, RootPairing.GeckConstruction.lie_h_h, Finset.sum_coe_sort_eq_attach, AddSubmonoid.mem_closure_finset', LinearMap.diag_toMatrix_directSum_collectedBasis_eq_zero_of_mapsTo_ne, Orthonormal.exists_orthonormalBasis_extension, CategoryTheory.Limits.CoproductsFromFiniteFiltered.liftToFinsetColimIso_aux, RootPairing.GeckConstruction.coe_genWeightSpace_zero_eq_span_range_u, Equiv.Perm.support_subtypePerm, finsetBasisOfLinearIndependentOfCardEqFinrank_repr_apply, Finset.sum_coe_sort, RootPairing.GeckConstruction.lie_e_f_mul_Ο‰, Finset.sum_eq_sum_extend, RootPairing.GeckConstruction.e_lie_u, RootPairing.GeckConstruction.lie_e_f_ne, Finset.sum_dite, Equiv.Perm.commute_ofSubtype_noncommPiCoprod, Equiv.Perm.OnCycleFactors.sign_kerParam_apply_apply, Finset.prod_dite_of_true

FinsetCoe

Definitions

NameCategoryTheorems
fintype πŸ“–CompOp
6 mathmath: hasSum_sum_support_of_ne_finset_zero, hasProd_prod_support_of_ne_finset_one, Finset.hasSum_support, Finset.hasProd_support, Finset.prod_finset_coe, Finset.sum_finset_coe

Fintype

Definitions

NameCategoryTheorems
finsetEquivSet πŸ“–CompOp
5 mathmath: coe_finsetEquivSet, finsetEquivSet_apply, coe_finsetOrderIsoSet_symm, finsetOrderIsoSet_toEquiv, finsetEquivSet_symm_apply
finsetOrderIsoSet πŸ“–CompOp
3 mathmath: coe_finsetOrderIsoSet_symm, coe_finsetOrderIsoSet, finsetOrderIsoSet_toEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
coe_finsetEquivSet πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Finset
Set
EquivLike.toFunLike
Equiv.instEquivLike
finsetEquivSet
SetLike.coe
Finset.instSetLike
β€”β€”
coe_finsetOrderIsoSet πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Finset
Set
Preorder.toLE
PartialOrder.toPreorder
Finset.partialOrder
Set.instLE
instFunLikeOrderIso
finsetOrderIsoSet
SetLike.coe
Finset.instSetLike
β€”β€”
coe_finsetOrderIsoSet_symm πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Set
Finset
Set.instLE
Preorder.toLE
PartialOrder.toPreorder
Finset.partialOrder
instFunLikeOrderIso
OrderIso.symm
finsetOrderIsoSet
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
finsetEquivSet
β€”β€”
coe_image_univ πŸ“–mathematicalβ€”SetLike.coe
Finset
Finset.instSetLike
Finset.image
Finset.univ
Set.range
β€”Finset.coe_image
Finset.coe_univ
Set.image_univ
finsetEquivSet_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Finset
Set
EquivLike.toFunLike
Equiv.instEquivLike
finsetEquivSet
SetLike.coe
Finset.instSetLike
β€”β€”
finsetEquivSet_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Set
Finset
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
finsetEquivSet
Set.toFinset
β€”β€”
finsetOrderIsoSet_toEquiv πŸ“–mathematicalβ€”RelIso.toEquiv
Finset
Set
Preorder.toLE
PartialOrder.toPreorder
Finset.partialOrder
Set.instLE
finsetOrderIsoSet
finsetEquivSet
β€”β€”
univ_Prop πŸ“–mathematicalβ€”Finset.univ
Prop.fintype
Finset
Finset.instInsert
LinearOrder.toDecidableEq
Prop.linearOrder
Finset.instSingleton
β€”Finset.eq_of_veq
Multiset.ndinsert_of_notMem

List.Subtype

Definitions

NameCategoryTheorems
fintype πŸ“–CompOp
2 mathmath: List.cycleType_formPerm, List.cycleOf_formPerm

Multiset.Subtype

Definitions

NameCategoryTheorems
fintype πŸ“–CompOp
2 mathmath: Finset.sum_mem_multiset, Finset.prod_mem_multiset

Prop

Definitions

NameCategoryTheorems
fintype πŸ“–CompOp
4 mathmath: Fintype.univ_Prop, Fintype.prod_Prop, Fintype.card_prop, Fintype.sum_Prop

Set

Definitions

NameCategoryTheorems
decidableMemOfFintype πŸ“–CompOpβ€”
toFinset πŸ“–CompOp
112 mathmath: toFinset_Icc, FormalMultilinearSeries.comp_rightInv_aux1, finrank_span_set_eq_card, quadraticChar_card_sqrts, toFinset_union, einfsep_of_fintype, SimpleGraph.edgeFinset_subset_sym2_of_support_subset, subsingleton_toFinset_iff, subset_toFinset, toFinset_compl, SimpleGraph.edgeFinset_top, toFinset_Ioi, toFinset_range, toFinset_ssubset_toFinset, toFinset_symmDiff, hasSum_sum_support_of_ne_finset_zero, ConjRootClass.minpoly.map_eq_prod, hasProd_prod_support_of_ne_finset_one, SimpleGraph.disjiUnion_supp_toFinset_eq_supp_toFinset, filter_mem_univ_eq_toFinset, image_range_addOrderOf, toFinset_eq_empty, OrderIso.infIrredUpperSet_symm_apply, toFinset_Ioo, toFinset_diff, toFinset_Iic, toFinset_inj, Finset.hasSum_support, hasProd_fintype_support, Finset.toFinset_coe, Nontrivial.infsep_of_fintype, OrderIso.supIrredLowerSet_symm_apply, toFinset_congr, toFinset_zero, finrank_span_le_card, disjoint_toFinset, toFinset_Ici, toFinset_Ico, toFinset_vadd_set, toFinset_image2, sum_conjClasses_card_eq_card, toFinset_vsub, toFinite_toFinset, toFinset_smul, hasSum_fintype_support, toFinset_Ioc, infsep_of_fintype, toFinset_eq_univ, toFinset_offDiag, toFinset_nonempty, toFinset_card, toFinset_image, toFinset_insert, toFinset_singleton, toFinset_empty, Finite.toFinset_eq_toFinset, ncard_eq_toFinset_card', SimpleGraph.set_walk_length_toFinset_eq, toFinset_subset, toFinset_ofFinset, toFinset_add, toFinset_strict_mono, encard_eq_coe_toFinset_card, SimpleGraph.Subgraph.IsSpanning.card_verts, Finset.hasProd_support, toFinset_inter, toFinset_off_diag, toFinset_ssubset, SimpleGraph.map_neighborFinset_induce, ssubset_toFinset, SimpleGraph.sum_degrees_support_eq_twice_card_edges, Finset.prod_set_coe, Finset.sum_toFinset_eq_subtype, ConjRootClass.aroots_minpoly_eq_carrier_val, Ideal.map_algebraMap_eq_finset_prod_pow, ConjRootClass.carrier_eq_mk_aroots_minpoly, FormalMultilinearSeries.radius_right_inv_pos_of_radius_pos_aux1, toFinset_iUnion, legendreSym.card_sqrts, image_range_orderOf, Nat.card_eq_card_toFinset, toFinset_subset_toFinset, toFinset_univ, toFinset_nontrivial, toFinset_mul, toFinset_one, SimpleGraph.Subgraph.finset_card_neighborSet_eq_degree, toFinset_ssubset_univ, Polynomial.Gal.card_complex_roots_eq_card_real_add_card_not_gal_inv, toFinset_vadd, mem_toFinset, toFinset_subset_toFinset_of_subset, Lagrange.nodal_subgroup_eq_X_pow_card_sub_one, Finset.sum_set_coe, SimpleGraph.card_neighborSet_union_compl_neighborSet, toFinset_smul_set, toFinset_mono, Aesop.toFinset_nonempty_of_nonempty, FormalMultilinearSeries.rightInv_coeff, Finset.prod_toFinset_eq_subtype, FormalMultilinearSeries.comp_rightInv_aux2, Group.card_center_add_sum_card_noncenter_eq_card, SimpleGraph.Subgraph.IsMatching.even_card, toFinset_Iio, toFinset_setOf, finsum_mem_eq_toFinset_sum, SimpleGraph.neighborFinset_def, SimpleGraph.map_edgeFinset_induce, toFinset_prod, Fintype.finsetEquivSet_symm_apply, finprod_mem_eq_toFinset_prod, coe_toFinset

Theorems

NameKindAssumesProvesValidatesDepends On
coe_toFinset πŸ“–mathematicalβ€”SetLike.coe
Finset
Finset.instSetLike
toFinset
β€”ext
mem_toFinset
disjoint_toFinset πŸ“–mathematicalβ€”Disjoint
Finset
Finset.partialOrder
Finset.instOrderBot
toFinset
Set
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
instBooleanAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
β€”coe_toFinset
filter_mem_univ_eq_toFinset πŸ“–mathematicalβ€”Finset.filter
Set
instMembership
Finset.univ
toFinset
β€”Finset.ext
Finset.mem_filter_univ
mem_toFinset
mem_toFinset πŸ“–mathematicalβ€”Finset
Finset.instMembership
toFinset
Set
instMembership
β€”β€”
ssubset_toFinset πŸ“–mathematicalβ€”Finset
Finset.instHasSSubset
toFinset
Set
instHasSSubset
SetLike.coe
Finset.instSetLike
β€”Finset.coe_ssubset
coe_toFinset
subset_toFinset πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
toFinset
Set
instHasSubset
SetLike.coe
Finset.instSetLike
β€”Finset.coe_subset
coe_toFinset
subsingleton_toFinset_iff πŸ“–mathematicalβ€”Finset
SetLike.instMembership
Finset.instSetLike
toFinset
Subsingleton
β€”β€”
toFinset_compl πŸ“–mathematicalβ€”toFinset
Compl.compl
Set
instCompl
Finset
BooleanAlgebra.toCompl
Finset.booleanAlgebra
β€”Finset.ext
toFinset_congr πŸ“–mathematicalβ€”toFinsetβ€”Lean.Meta.FastSubsingleton.elim
Fintype.instFastSubsingleton
toFinset_diff πŸ“–mathematicalβ€”toFinset
Set
instSDiff
Finset
Finset.instSDiff
β€”Finset.ext
toFinset_empty πŸ“–mathematicalβ€”toFinset
Set
instEmptyCollection
Finset
Finset.instEmptyCollection
β€”Finset.ext
toFinset_eq_empty πŸ“–mathematicalβ€”toFinset
Finset
Finset.instEmptyCollection
Set
instEmptyCollection
β€”instIsEmptyElemEmptyCollection
toFinset_empty
toFinset_eq_univ πŸ“–mathematicalβ€”toFinset
Finset.univ
univ
β€”coe_toFinset
Finset.coe_univ
toFinset_image πŸ“–mathematicalβ€”toFinset
image
Finset.image
β€”Finset.coe_injective
coe_toFinset
Finset.coe_image
toFinset_inj πŸ“–mathematicalβ€”toFinsetβ€”coe_toFinset
toFinset_congr
toFinset_insert πŸ“–mathematicalβ€”toFinset
Set
instInsert
Finset
Finset.instInsert
β€”Finset.ext
toFinset_inter πŸ“–mathematicalβ€”toFinset
Set
instInter
Finset
Finset.instInter
β€”Finset.ext
toFinset_mono πŸ“–mathematicalSet
instHasSubset
Finset
Finset.instHasSubset
toFinset
β€”toFinset_subset_toFinset
toFinset_nonempty πŸ“–mathematicalβ€”Finset.Nonempty
toFinset
Nonempty
β€”Finset.coe_nonempty
coe_toFinset
toFinset_nontrivial πŸ“–mathematicalβ€”Finset.Nontrivial
toFinset
Nontrivial
β€”Finset.Nontrivial.eq_1
coe_toFinset
toFinset_ofFinset πŸ“–mathematicalFinset
Finset.instMembership
Set
instMembership
toFinset
Fintype.ofFinset
β€”Finset.ext
mem_toFinset
toFinset_range πŸ“–mathematicalβ€”toFinset
range
Finset.image
Finset.univ
β€”Finset.ext
toFinset_setOf πŸ“–mathematicalβ€”toFinset
setOf
Finset.filter
Finset.univ
β€”Finset.ext
toFinset_singleton πŸ“–mathematicalβ€”toFinset
Set
instSingletonSet
Finset
Finset.instSingleton
β€”Finset.ext
toFinset_ssubset πŸ“–mathematicalβ€”Finset
Finset.instHasSSubset
toFinset
Set
instHasSSubset
SetLike.coe
Finset.instSetLike
β€”Finset.coe_ssubset
coe_toFinset
toFinset_ssubset_toFinset πŸ“–mathematicalβ€”Finset
Finset.instHasSSubset
toFinset
Set
instHasSSubset
β€”β€”
toFinset_ssubset_univ πŸ“–mathematicalβ€”Finset
Finset.instHasSSubset
toFinset
Finset.univ
Set
instHasSSubset
univ
β€”Finset.coe_univ
toFinset_strict_mono πŸ“–mathematicalSet
instHasSSubset
Finset
Finset.instHasSSubset
toFinset
β€”toFinset_ssubset_toFinset
toFinset_subset πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
toFinset
Set
instHasSubset
SetLike.coe
Finset.instSetLike
β€”Finset.coe_subset
coe_toFinset
toFinset_subset_toFinset πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
toFinset
Set
instHasSubset
β€”β€”
toFinset_subset_toFinset_of_subset πŸ“–mathematicalSet
instHasSubset
Finset
Finset.instHasSubset
toFinset
β€”toFinset_mono
toFinset_symmDiff πŸ“–mathematicalβ€”toFinset
symmDiff
Set
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
instBooleanAlgebra
instSDiff
Finset
Finset.instLattice
Finset.instSDiff
β€”Finset.ext
toFinset_union πŸ“–mathematicalβ€”toFinset
Set
instUnion
Finset
Finset.instUnion
β€”Finset.ext
toFinset_univ πŸ“–mathematicalβ€”toFinset
univ
Finset.univ
β€”Finset.ext

Set.Aesop

Theorems

NameKindAssumesProvesValidatesDepends On
toFinset_nonempty_of_nonempty πŸ“–mathematicalSet.NonemptyFinset.Nonempty
Set.toFinset
β€”Set.toFinset_nonempty

Subtype

Definitions

NameCategoryTheorems
fintype πŸ“–CompOp
170 mathmath: NumberField.mixedEmbedding.integral_comp_polarSpaceCoord_symm, NumberField.mixedEmbedding.fundamentalCone.expMapBasis_apply', NumberField.mixedEmbedding.fundamentalDomain_integerLattice, FormalMultilinearSeries.comp_rightInv_aux1, Fintype.prod_fiberwise', quadraticChar_card_sqrts, NumberField.mixedEmbedding.lintegral_comp_polarCoord_symm, Fintype.prod_dite, NumberField.mixedEmbedding.norm_eq_sup'_normAtPlace, SimpleGraph.edgeFinset_subset_sym2_of_support_subset, Sym2.card_subtype_not_diag, NumberField.mixedEmbedding.norm_le_convexBodySumFun, NumberField.Units.regOfFamily_eq_det, SimpleGraph.edgeFinset_top, SimpleGraph.map_edgeFinset_induce_of_support_subset, NumberField.mixedEmbedding.instIsAddHaarMeasureMixedSpaceVolume, Equiv.Perm.sign_subtypePerm, Matrix.toBlock_mul_eq_add, Equiv.Perm.OnCycleFactors.kerParam_range_card, char_dvd_card_solutions_of_add_lt, Matrix.charmatrix_toSquareBlock, NumberField.mixedEmbedding.instNoAtomsMixedSpaceVolume, SimpleGraph.disjiUnion_supp_toFinset_eq_supp_toFinset, NumberField.mixedEmbedding.convexBodyLT_volume, LinearMap.rank_diagonal, NumberField.mixedEmbedding.convexBodySumFun_apply', SimpleGraph.card_commonNeighbors_le_degree_left, NumberField.mixedEmbedding.fundamentalCone.volume_frontier_normLeOne, NumberField.mixedEmbedding.iUnion_negAt_plusPart_ae, Algebra.Norm.Transitivity.comp_det_mul_pow, SimpleGraph.IsSRGWith.card_neighborFinset_union_eq, NumberField.mixedEmbedding.fundamentalCone.volume_interior_eq_volume_closure, Equiv.Perm.sign_of_cycleType_eq_replicate, NumberField.mixedEmbedding.euclidean.stdOrthonormalBasis_map_eq, NumberField.mixedEmbedding.convexBodySum_volume_eq_zero_of_le_zero, Finset.hasSum_support, hasProd_fintype_support, NumberField.mixedEmbedding.fundamentalCone.logMap_expMapBasis, SimpleGraph.ConnectedComponent.even_card_of_isPerfectMatching, SimpleGraph.Adj.card_commonNeighbors_lt_degree, Fintype.sum_eq_add_sum_subtype_ne, NumberField.Units.instZLattice_unitLattice, Equiv.Perm.cycleType_ofSubtype, NumberField.Units.regulator_eq_det, NumberField.mixedEmbedding.fundamentalDomain_idealLattice, Matrix.equiv_compl_fromCols_mul_fromRows_eq_one_comm, Equiv.Perm.card_fixedPoints_modEq, NumberField.mixedEmbedding.fundamentalCone.prod_deriv_expMap_single, Matrix.toBlock_mul_eq_mul, Fintype.card_fin_lt_of_le, hasSum_fintype_support, NumberField.Units.dirichletUnitTheorem.sum_logEmbedding_component, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed, NumberField.mixedEmbedding.covolume_idealLattice, NumberField.mixedEmbedding.volume_preserving_negAt, AddGroup.card_nsmul_eq_card_nsmul_card_univ, SimpleGraph.card_commonNeighbors_le_degree_right, NumberField.Units.regOfFamily_of_isMaxRank, SimpleGraph.map_neighborFinset_induce_of_neighborSet_subset, Equiv.Perm.support_ofSubtype, SimpleGraph.degree_induce_support, Equiv.Perm.sign_of_pow_two_eq_one, Matrix.twoBlockTriangular_det, Matrix.twoBlockTriangular_det', NumberField.mixedEmbedding.volume_preserving_mixedSpaceToRealMixedSpace_symm, CategoryTheory.HomOrthogonal.matrixDecomposition_comp, NumberField.mixedEmbedding.fundamentalDomain_stdBasis, NumberField.Units.dirichletUnitTheorem.unitLattice_inter_ball_finite, Matrix.BlockTriangular.toBlock_inverse_mul_toBlock_eq_one, Equiv.Perm.card_fixedPoints, NumberField.mixedEmbedding.stdBasis_repr_eq_matrixToStdBasis_mul, Matrix.det_toBlock, NumberField.mixedEmbedding.det_matrixToStdBasis, Sym2.card_diagSet_compl, NumberField.mixedEmbedding.covolume_integerLattice, Finset.hasProd_support, DomMulAct.stabilizer_card', NumberField.mixedEmbedding.euclidean.instDiscreteTopologySubtypeMixedSpaceMemSubmoduleIntIntegerLattice, NumberField.mixedEmbedding.euclidean.instIsZLatticeRealMixedSpaceIntegerLattice, Equiv.Perm.OnCycleFactors.cycleType_kerParam_apply_apply, SimpleGraph.card_commonNeighbors_lt_card_verts, SimpleGraph.map_neighborFinset_induce, NumberField.mixedEmbedding.volume_fundamentalDomain_fractionalIdealLatticeBasis, Fintype.prod_subtype_mul_prod_subtype, NumberField.mixedEmbedding.instIsZLatticeRealMixedSpaceIntegerLattice, SimpleGraph.card_support_deleteIncidenceSet, char_dvd_card_solutions, NumberField.Units.abs_det_eq_abs_det, char_dvd_card_solutions_of_sum_lt, NumberField.mixedEmbedding.volume_negAt_plusPart, NumberField.mixedEmbedding.convexBodyLT'_volume, NumberField.InfinitePlace.sum_eq_sum_add_sum, NumberField.InfinitePlace.card_real_embeddings, Matrix.BlockTriangular.det, SimpleGraph.IsSRGWith.of_adj, Matrix.rank_diagonal, SimpleGraph.IsSRGWith.card_commonNeighbors_eq_of_adj_compl, SimpleGraph.sum_degrees_support_eq_twice_card_edges, NumberField.mixedEmbedding.volume_eq_two_pow_mul_two_pi_pow_mul_integral, SimpleGraph.degree_induce_of_neighborSet_subset, NumberField.mixedEmbedding.volume_preserving_homeoRealMixedSpacePolarSpace, NumberField.mixedEmbedding.volume_eq_zero, Finset.sum_toFinset_eq_subtype, Fintype.card_subtype_eq_or_eq_of_ne, NumberField.mixedEmbedding.instIsZLatticeRealMixedSpaceIdealLattice, FormalMultilinearSeries.radius_right_inv_pos_of_radius_pos_aux1, NumberField.mixedEmbedding.lintegral_comp_polarCoordReal_symm, Fin.card_range_le, legendreSym.card_sqrts, Group.card_pow_eq_card_pow_card_univ, Fintype.sum_fiberwise, Matrix.equiv_block_det, NumberField.mixedEmbedding.polarCoordReal_symm_target_ae_eq_univ, SimpleGraph.card_commonNeighbors_top, Matrix.BlockTriangular.inv_toBlock, Finset.prod_congr_set, image_subtype_univ_ssubset_image_univ, NumberField.InfinitePlace.prod_eq_prod_mul_prod, Matrix.det_toSquareBlock_id, NumberField.mixedEmbedding.volume_fundamentalDomain_latticeBasis, NumberField.mixedEmbedding.fundamentalCone.setLIntegral_expMapBasis_image, Sym2.card_subtype_diag, SimpleGraph.card_edgeFinset_induce_support, Fintype.card_finset_len, NumberField.mixedEmbedding.fundamentalCone.abs_det_fderiv_expMapBasis, NumberField.mixedEmbedding.instIsAddHaarMeasureRealMixedSpaceVolume, SimpleGraph.degree_induce_of_support_subset, Equiv.Perm.CycleType.count_def, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed_symm, Finset.sum_congr_set, NumberField.mixedEmbedding.fundamentalCone.volume_normLeOne, Matrix.IsHermitian.rank_eq_card_non_zero_eigs, MeasureTheory.measurePreserving_piEquivPiSubtypeProd, MvPolynomial.esymm_eq_sum_subtype, NumberField.mixedEmbedding.det_fderivPolarCoordRealSymm, image_subtype_ne_univ_eq_image_erase, NumberField.mixedEmbedding.volume_eq_two_pi_pow_mul_integral, NumberField.mixedEmbedding.convexBodySum_volume, Fintype.sum_fiberwise', NumberField.Units.regulator_eq_det', Equiv.Perm.sign_subtypeCongr, FormalMultilinearSeries.rightInv_coeff, Fintype.sum_subtype_add_sum_subtype, Matrix.BlockTriangular.det_fintype, Finset.prod_toFinset_eq_subtype, FormalMultilinearSeries.comp_rightInv_aux2, NumberField.mixedEmbedding.integral_comp_polarCoord_symm, SimpleGraph.IsSRGWith.card_commonNeighbors_eq_of_not_adj_compl, SimpleGraph.card_edgeFinset_induce_of_support_subset, NumberField.InfinitePlace.card_complex_embeddings, DomMulAct.stabilizer_card, MeasureTheory.volume_preserving_piEquivPiSubtypeProd, NumberField.Units.basisOfIsMaxRank_fundSystem, NumberField.Units.regOfFamily_eq_det', SimpleGraph.Walk.IsEulerian.card_odd_degree, NumberField.mixedEmbedding.integral_comp_polarCoordReal_symm, SimpleGraph.map_edgeFinset_induce, NumberField.mixedEmbedding.nnnorm_eq_sup_normAtPlace, Matrix.BlockTriangular.charpoly, Equiv.Perm.sign_ofSubtype, Algebra.Norm.Transitivity.det_mul_corner_pow, Fintype.prod_eq_mul_prod_subtype_ne, NumberField.mixedEmbedding.volume_fundamentalDomain_stdBasis, char_dvd_card_solutions_of_fintype_sum_lt, NumberField.mixedEmbedding.volume_eq_two_pow_mul_volume_plusPart, NumberField.mixedEmbedding.fundamentalCone.normAtAllPlaces_normLeOne, Fintype.prod_fiberwise, Equiv.Perm.OnCycleFactors.sign_kerParam_apply_apply, SimpleGraph.card_edgeFinset_induce_compl_singleton, NumberField.mixedEmbedding.lintegral_comp_polarSpaceCoord_symm

(root)

Definitions

NameCategoryTheorems
finsetStx πŸ“–CompOpβ€”
precheckFinsetStx πŸ“–CompOpβ€”
setFintype πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
mem_image_univ_iff_mem_range πŸ“–mathematicalβ€”Finset
Finset.instMembership
Finset.image
Finset.univ
Set
Set.instMembership
Set.range
β€”β€”

---

← Back to Index