Documentation Verification Report

Sum

📁 Source: Mathlib/Data/Fintype/Sum.lean

Statistics

MetricCount
DefinitionsfintypeOfFintypeNe, instFintypeSum
2
Theoremsexists_equiv_extend_of_card_eq, toLeft_eq_empty, toLeft_eq_univ, toLeft_univ, toRight_eq_empty, toRight_eq_univ, toRight_univ, univ_disjSum_univ, card_subtype_eq_or_eq_of_ne, card_subtype_or, card_subtype_or_disjoint, card_sum, exists_equiv_extend_of_card_eq, image_subtype_ne_univ_eq_image_erase, image_subtype_univ_ssubset_image_univ, infinite_sum
16
Total18

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
exists_equiv_extend_of_card_eq 📖mathematicalFintype.card
card
Finset
instHasSubset
image
Set.InjOn
SetLike.coe
instSetLike
SetLike.instMembership
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
induction
Fintype.card_eq
Fintype.card_coe
instIsEmptyFalse
LE.le.trans
image_mono
subset_insert
Set.InjOn.mono
mem_image_of_mem
mem_insert_self
Equiv.swap_apply_right
Equiv.trans_apply
Equiv.swap_apply_of_ne_of_ne
ne_of_eq_of_ne
Set.InjOn.ne
Equiv.injective
toLeft_eq_empty 📖mathematicaltoLeft
Finset
instEmptyCollection
instHasSubset
map
Function.Embedding.inr
univ
toLeft_eq_univ 📖mathematicaltoLeft
univ
Finset
instHasSubset
map
Function.Embedding.inl
toLeft_univ 📖mathematicaltoLeft
univ
instFintypeSum
ext
toRight_eq_empty 📖mathematicaltoRight
Finset
instEmptyCollection
instHasSubset
map
Function.Embedding.inl
univ
toRight_eq_univ 📖mathematicaltoRight
univ
Finset
instHasSubset
map
Function.Embedding.inr
toRight_univ 📖mathematicaltoRight
univ
instFintypeSum
ext
univ_disjSum_univ 📖mathematicaldisjSum
univ
instFintypeSum

Fintype

Theorems

NameKindAssumesProvesValidatesDepends On
card_subtype_eq_or_eq_of_ne 📖mathematicalcard
Subtype.fintype
card_subtype_or_disjoint
card_subtype_or 📖mathematicalcardcard_sum
card_le_of_embedding
card_subtype_or_disjoint 📖mathematicalDisjoint
Pi.partialOrder
Prop.partialOrder
Pi.instOrderBot
Prop.le
HeytingAlgebra.toOrderBot
Prop.instHeytingAlgebra
cardcard_sum
card_congr
card_sum 📖mathematicalcard
instFintypeSum
Finset.card_disjSum

Set.MapsTo

Theorems

NameKindAssumesProvesValidatesDepends On
exists_equiv_extend_of_card_eq 📖mathematicalFintype.card
Finset.card
Set.MapsTo
SetLike.coe
Finset
Finset.instSetLike
Set.InjOn
SetLike.instMembership
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Finset.coe_image
Set.coe_toFinset
Finset.exists_equiv_extend_of_card_eq

(root)

Definitions

NameCategoryTheorems
fintypeOfFintypeNe 📖CompOp
instFintypeSum 📖CompOp
145 mathmath: SymplecticGroup.transpose_mem_iff, AlternatingMap.domCoprod.summand_mk'', Matrix.invOf_fromBlocks₂₂_eq, RootPairing.GeckConstruction.isSl2Triple, Matrix.Pivot.listTransvecCol_mul_mul_listTransvecRow_last_col, IsometryEquiv.sumArrowIsometryEquivProdArrow_toHomeomorph, RootPairing.GeckConstruction.instHasTrivialRadical, RootPairing.GeckConstruction.instIsLieAbelianSubtypeMatrixSumMemFinsetSupportLieSubalgebraCartanSubalgebra, RootPairing.GeckConstruction.h_mem_cartanSubalgebra, SymplecticGroup.coe_inv, Finset.univ_disjSum_univ, LieAlgebra.Orthogonal.soIndefiniteEquiv_apply, SymplecticGroup.coe_J, Matrix.Pivot.listTransvecCol_mul_last_col, Matrix.inv_fromBlocks_zero₁₂_of_isUnit_iff, RootPairing.GeckConstruction.trace_h_eq_zero, AlternatingMap.domCoprod_coe, Matrix.fromBlocks_eq_of_invertible₁₁, RootPairing.GeckConstruction.mem_ωConjLieSubmodule_iff, SimpleGraph.TripartiteFromTriangles.cliqueFinset_eq_map, RootPairing.GeckConstruction.cartanSubalgebra_eq_lieSpan, LieAlgebra.Orthogonal.jb_transform, SymplecticGroup.mem_iff, Matrix.Pivot.mul_listTransvecRow_last_col, LieAlgebra.Orthogonal.indefiniteDiagonal_assoc, NumberField.mixedEmbedding.euclidean.stdOrthonormalBasis_map_eq, OrthonormalBasis.prod_apply, PiLp.sumPiLpEquivProdLpPiLp_symm_apply_ofLp, Module.Basis.prod_addHaar, Matrix.vecMul_fromRows, RootPairing.GeckConstruction.lie_h_e, Fintype.sum_sum_type, Matrix.Pivot.exists_isTwoBlockDiagonal_list_transvec_mul_mul_list_transvec, Matrix.isUnit_fromBlocks_zero₂₁, Matrix.fromBlocks_mul_fromRows, Finset.toLeft_univ, Matrix.equiv_compl_fromCols_mul_fromRows_eq_one_comm, Matrix.charpoly_fromBlocks_zero₂₁, Matrix.J_squared, Equiv.Perm.sign_sumCongr, RootPairing.GeckConstruction.trace_toEnd_eq_zero, Matrix.charmatrix_fromBlocks, Matrix.vecMul_fromBlocks, MultilinearMap.domCoprod_alternization_eq, Matrix.isUnit_det_J, Matrix.schur_complement_eq₂₂, RootPairing.GeckConstruction.span_range_h'_eq_top, Matrix.fromBlocks_mulVec, Finset.toRight_univ, addRothNumber_le_ruzsaSzemerediNumber, RootPairing.GeckConstruction.instIsLieAbelianSubtypeMatrixSumMemFinsetSupportLieSubalgebraLieAlgebraCartanSubalgebra', Matrix.TransvectionStruct.mul_sumInl_toMatrix_prod, Matrix.det_fromBlocks₁₁, sumElim_dotProduct_sumElim, Matrix.det_fromBlocks_one₁₁, RootPairing.GeckConstruction.ω_mul_h, Matrix.invOf_fromBlocks_zero₁₂_eq, RootPairing.GeckConstruction.instIsIrreducible, SimpleGraph.TripartiteFromTriangles.cliqueFinset_eq_image, Module.Basis.prod_parallelepiped, IsometryEquiv.sumArrowIsometryEquivProdArrow_symm_apply, Matrix.isUnit_fromBlocks_iff_of_invertible₂₂, NumberField.mixedEmbedding.stdBasis_repr_eq_matrixToStdBasis_mul, RootPairing.GeckConstruction.ωConjLieSubmodule_eq_top_iff, Matrix.det_toBlock, NumberField.mixedEmbedding.det_matrixToStdBasis, Matrix.fromBlocks_eq_of_invertible₂₂, Matrix.Pivot.exists_list_transvec_mul_mul_list_transvec_eq_diagonal_induction, Matrix.schur_complement_eq₁₁, Matrix.Pivot.mul_listTransvecRow_last_row, Matrix.det_fromBlocks_one₂₂, Matrix.isUnit_fromBlocks_zero₁₂, RootPairing.GeckConstruction.cartanSubalgebra_le_lieAlgebra, SymplecticGroup.mem_iff', Matrix.isUnit_fromBlocks_iff_of_invertible₁₁, LinearMap.toMatrix_prodMap, RootPairing.GeckConstruction.instIsTriangularizableSubtypeMatrixSumMemFinsetSupportLieSubalgebraLieAlgebraCartanSubalgebra'Forall, RootPairing.GeckConstruction.ωConj_invFun, Matrix.Pivot.listTransvecCol_mul_last_row_drop, Matrix.Pivot.listTransvecCol_mul_mul_listTransvecRow_last_row, Matrix.dotProduct_block, RootPairing.GeckConstruction.isNilpotent_f, RootPairing.GeckConstruction.lie_e_f_same, RootPairing.GeckConstruction.ω_mul_ω, RootPairing.GeckConstruction.f_lie_v_ne, RootPairing.GeckConstruction.ωConj_toFun, Matrix.charpoly_fromBlocks_zero₁₂, RootPairing.GeckConstruction.e_lie_v_ne, Matrix.Pivot.isTwoBlockDiagonal_listTransvecCol_mul_mul_listTransvecRow, RootPairing.GeckConstruction.ω_mul_e, RootPairing.GeckConstruction.isNilpotent_e, Matrix.det_fromBlocks₂₂, MultilinearMap.domCoprod_alternization, LieAlgebra.Orthogonal.jd_transform, Matrix.fromCols_mul_fromRows_eq_one_comm, Matrix.Pivot.mul_listTransvecRow_last_col_take, RootPairing.GeckConstruction.h_mem_lieAlgebra, Matrix.Pivot.exists_isTwoBlockDiagonal_of_ne_zero, Matrix.det_fromBlocks_zero₁₂, Matrix.Pivot.listTransvecCol_mul_last_row, Matrix.inv_fromBlocks_zero₂₁_of_isUnit_iff, SimpleGraph.TripartiteFromTriangles.card_triangles, RootPairing.GeckConstruction.lie_h_f, Matrix.J_inv, RootPairing.GeckConstruction.ω_mul_f, Polynomial.toMatrix_sylvesterMap, RootPairing.GeckConstruction.lie_e_lie_f_apply, Matrix.det_fromBlocks_zero₂₁, Matrix.invOf_fromBlocks_zero₂₁_eq, Matrix.sumElim_vecMul_fromRows, RootPairing.GeckConstruction.f_lie_v_same, Matrix.J_det_mul_J_det, Matrix.TransvectionStruct.sumInl_toMatrix_prod_mul, SymplecticGroup.coe_inv', Fintype.prod_sumElim, LieAlgebra.Orthogonal.pso_inv, MeasureTheory.measurePreserving_sumPiEquivProdPi_symm, Matrix.fromBlocks_multiply, Matrix.fromCols_mulVec_sumElim, RootPairing.GeckConstruction.f_mem_lieAlgebra, LieAlgebra.Orthogonal.indefiniteDiagonal_transform, RootPairing.GeckConstruction.e_mem_lieAlgebra, LieAlgebra.Orthogonal.pb_inv, RootPairing.GeckConstruction.lie_h_h, Fintype.prod_sum_type, Matrix.fromCols_mul_fromRows, AlternatingMap.domCoprod_apply, Fintype.sum_sumElim, MeasureTheory.volume_measurePreserving_sumPiEquivProdPi, Matrix.fromCols_mulVec, RootPairing.GeckConstruction.coe_genWeightSpace_zero_eq_span_range_u, IsometryEquiv.sumArrowIsometryEquivProdArrow_apply, Matrix.fromCols_mul_fromBlocks, MeasureTheory.volume_measurePreserving_sumPiEquivProdPi_symm, SimpleGraph.TripartiteFromTriangles.farFromTriangleFree, Matrix.invOf_fromBlocks₁₁_eq, RootPairing.GeckConstruction.lie_e_f_mul_ω, SymplecticGroup.J_mem, Fintype.card_sum, MeasureTheory.measurePreserving_sumPiEquivProdPi, PiLp.sumPiLpEquivProdLpPiLp_apply_ofLp, RootPairing.GeckConstruction.e_lie_u, RootPairing.GeckConstruction.lie_e_f_ne, Matrix.fromBlocks_diagonal_pow, LieAlgebra.Orthogonal.pd_inv

Theorems

NameKindAssumesProvesValidatesDepends On
image_subtype_ne_univ_eq_image_erase 📖mathematicalFinset.image
Finset.univ
Subtype.fintype
Finset.erase
subset_antisymm
Finset.instAntisymmSubset
Finset.image_subset_iff
Finset.mem_erase_of_ne_of_mem
Finset.mem_image_of_mem
Finset.mem_univ
Finset.mem_image
Finset.erase_subset
Finset.ne_of_mem_erase
image_subtype_univ_ssubset_image_univ 📖mathematicalFinset
Finset.instMembership
Finset.image
Finset.univ
Finset.instHasSSubset
Subtype.fintype
infinite_sum 📖mathematicalInfiniteMathlib.Tactic.Contrapose.contrapose₁
Finite.of_fintype
Sum.infinite_of_left
Sum.infinite_of_right

---

← Back to Index