Documentation Verification Report

Holor

πŸ“ Source: Mathlib/Data/Holor.lean

Statistics

MetricCount
DefinitionsHolor, CPRankMax, CPRankMax1, assocLeft, assocRight, cprank, instAdd, instAddCommGroup, instAddCommMonoid, instAddCommSemigroup, instAddGroup, instAddMonoid, instAddSemigroup, instInhabited, instModule, instNeg, instSMulOfMul, instZero, mul, slice, unitVec, HolorIndex, assocLeft, assocRight, drop, take
26
Theoremscast_type, cprankMax_1, cprankMax_add, cprankMax_mul, cprankMax_nil, cprankMax_sum, cprankMax_upper_bound, cprank_upper_bound, holor_index_cons_decomp, mul_assoc, mul_assoc0, mul_left_distrib, mul_right_distrib, mul_scalar_mul, mul_zero, slice_add, slice_eq, slice_sum, slice_unitVec_mul, slice_zero, sum_unitVec_mul_slice, zero_mul, cast_type, drop_drop, drop_take, take_take
26
Total52

Holor

Definitions

NameCategoryTheorems
CPRankMax πŸ“–CompData
3 mathmath: cprankMax_upper_bound, cprankMax_1, cprankMax_nil
CPRankMax1 πŸ“–CompDataβ€”
assocLeft πŸ“–CompOp
1 mathmath: mul_assoc0
assocRight πŸ“–CompOpβ€”
cprank πŸ“–CompOp
1 mathmath: cprank_upper_bound
instAdd πŸ“–CompOp
4 mathmath: slice_add, cprankMax_add, mul_right_distrib, mul_left_distrib
instAddCommGroup πŸ“–CompOpβ€”
instAddCommMonoid πŸ“–CompOp
3 mathmath: slice_sum, cprankMax_sum, sum_unitVec_mul_slice
instAddCommSemigroup πŸ“–CompOpβ€”
instAddGroup πŸ“–CompOpβ€”
instAddMonoid πŸ“–CompOpβ€”
instAddSemigroup πŸ“–CompOpβ€”
instInhabited πŸ“–CompOpβ€”
instModule πŸ“–CompOpβ€”
instNeg πŸ“–CompOpβ€”
instSMulOfMul πŸ“–CompOp
1 mathmath: mul_scalar_mul
instZero πŸ“–CompOp
4 mathmath: zero_mul, slice_zero, slice_unitVec_mul, mul_zero
mul πŸ“–CompOp
10 mathmath: mul_scalar_mul, zero_mul, mul_assoc, slice_unitVec_mul, mul_zero, mul_assoc0, mul_right_distrib, mul_left_distrib, cprankMax_mul, sum_unitVec_mul_slice
slice πŸ“–CompOp
5 mathmath: slice_sum, slice_zero, slice_unitVec_mul, slice_add, sum_unitVec_mul_slice
unitVec πŸ“–CompOp
2 mathmath: slice_unitVec_mul, sum_unitVec_mul_slice

Theorems

NameKindAssumesProvesValidatesDepends On
cast_type πŸ“–mathematicalβ€”Holor
HolorIndex
β€”β€”
cprankMax_1 πŸ“–mathematicalCPRankMax1CPRankMaxβ€”add_zero
zero_add
cprankMax_add πŸ“–mathematicalCPRankMaxHolor
instAdd
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
β€”zero_add
add_comm
add_left_comm
add_assoc
cprankMax_mul πŸ“–mathematicalCPRankMax
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
mulβ€”mul_zero
mul_left_distrib
cprankMax_add
cprankMax_1
cprankMax_nil πŸ“–mathematicalβ€”CPRankMaxβ€”zero_add
add_zero
cprankMax_sum πŸ“–mathematicalCPRankMax
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.card
Finset.sum
Holor
instAddCommMonoid
β€”Finset.induction_on
instIsEmptyFalse
Finset.card_insert_of_notMem
Finset.sum_insert
cprankMax_add
Finset.mem_insert_self
cprankMax_upper_bound πŸ“–mathematicalβ€”CPRankMax
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Nat.instOne
β€”cprankMax_nil
cprankMax_mul
Finset.card_range
cprankMax_sum
Finset.card_attach
Finset.mem_range
Subtype.prop
sum_unitVec_mul_slice
cprank_upper_bound πŸ“–mathematicalβ€”cprank
Nat.instOne
β€”Nat.find_min'
cprankMax_upper_bound
holor_index_cons_decomp πŸ“–β€”β€”β€”β€”List.forallβ‚‚_nil_left_iff
mul_assoc πŸ“–mathematicalβ€”Holor
mul
Semigroup.toMul
β€”mul_assoc0
mul_assoc0 πŸ“–mathematicalβ€”mul
Semigroup.toMul
assocLeft
β€”assocLeft.eq_1
mul_assoc
HolorIndex.take_take
HolorIndex.drop_take
HolorIndex.drop_drop
cast_type
mul_left_distrib πŸ“–mathematicalβ€”mul
Distrib.toMul
Holor
instAdd
Distrib.toAdd
β€”left_distrib
Distrib.leftDistribClass
mul_right_distrib πŸ“–mathematicalβ€”mul
Distrib.toMul
Holor
instAdd
Distrib.toAdd
β€”add_mul
Distrib.rightDistribClass
mul_scalar_mul πŸ“–mathematicalβ€”mul
Holor
instSMulOfMul
β€”Subtype.coe_eta
mul_zero πŸ“–mathematicalβ€”mul
MulZeroClass.toMul
Holor
instZero
MulZeroClass.toZero
β€”MulZeroClass.mul_zero
slice_add πŸ“–mathematicalβ€”Holor
instAdd
slice
β€”β€”
slice_eq πŸ“–β€”sliceβ€”β€”holor_index_cons_decomp
slice_sum πŸ“–mathematicalβ€”Finset.sum
Holor
instAddCommMonoid
slice
β€”Finset.induction_on
Finset.sum_insert
slice_add
slice_unitVec_mul πŸ“–mathematicalβ€”slice
mul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
unitVec
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Holor
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”zero_add
Subtype.coe_eta
one_mul
MulZeroClass.zero_mul
slice_zero πŸ“–mathematicalβ€”slice
Holor
instZero
β€”β€”
sum_unitVec_mul_slice πŸ“–mathematicalβ€”Finset.sum
Finset
Finset.instMembership
Finset.range
Holor
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finset.attach
mul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
unitVec
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
slice
Finset.mem_range
Subtype.prop
β€”slice_eq
Finset.mem_range
Subtype.prop
slice_sum
Finset.sum_congr
slice_unitVec_mul
Finset.sum_eq_single
Finset.mem_attach
zero_mul πŸ“–mathematicalβ€”mul
MulZeroClass.toMul
Holor
instZero
MulZeroClass.toZero
β€”MulZeroClass.zero_mul

HolorIndex

Definitions

NameCategoryTheorems
assocLeft πŸ“–CompOpβ€”
assocRight πŸ“–CompOp
3 mathmath: drop_take, take_take, drop_drop
drop πŸ“–CompOp
2 mathmath: drop_take, drop_drop
take πŸ“–CompOp
2 mathmath: drop_take, take_take

Theorems

NameKindAssumesProvesValidatesDepends On
cast_type πŸ“–mathematicalβ€”HolorIndexβ€”β€”
drop_drop πŸ“–mathematicalβ€”drop
assocRight
β€”cast_type
drop_take πŸ“–mathematicalβ€”take
drop
assocRight
β€”cast_type
take_take πŸ“–mathematicalβ€”take
assocRight
β€”cast_type
inf_of_le_left

(root)

Definitions

NameCategoryTheorems
Holor πŸ“–CompOp
14 mathmath: Holor.mul_scalar_mul, Holor.zero_mul, Holor.slice_sum, Holor.mul_assoc, Holor.slice_zero, Holor.slice_unitVec_mul, Holor.slice_add, Holor.mul_zero, Holor.cprankMax_add, Holor.cprankMax_sum, Holor.cast_type, Holor.mul_right_distrib, Holor.mul_left_distrib, Holor.sum_unitVec_mul_slice
HolorIndex πŸ“–CompOp
2 mathmath: HolorIndex.cast_type, Holor.cast_type

---

← Back to Index