| Name | Category | Theorems |
CPRankMax π | CompData | 3 mathmath: cprankMax_upper_bound, cprankMax_1, cprankMax_nil
|
CPRankMax1 π | CompData | β |
assocLeft π | CompOp | 1 mathmath: mul_assoc0
|
assocRight π | CompOp | β |
cprank π | CompOp | 1 mathmath: cprank_upper_bound
|
instAdd π | CompOp | 4 mathmath: slice_add, cprankMax_add, mul_right_distrib, mul_left_distrib
|
instAddCommGroup π | CompOp | β |
instAddCommMonoid π | CompOp | 3 mathmath: slice_sum, cprankMax_sum, sum_unitVec_mul_slice
|
instAddCommSemigroup π | CompOp | β |
instAddGroup π | CompOp | β |
instAddMonoid π | CompOp | β |
instAddSemigroup π | CompOp | β |
instInhabited π | CompOp | β |
instModule π | CompOp | β |
instNeg π | CompOp | β |
instSMulOfMul π | CompOp | 1 mathmath: mul_scalar_mul
|
instZero π | CompOp | 4 mathmath: zero_mul, slice_zero, slice_unitVec_mul, mul_zero
|
mul π | CompOp | 10 mathmath: mul_scalar_mul, zero_mul, mul_assoc, slice_unitVec_mul, mul_zero, mul_assoc0, mul_right_distrib, mul_left_distrib, cprankMax_mul, sum_unitVec_mul_slice
|
slice π | CompOp | 5 mathmath: slice_sum, slice_zero, slice_unitVec_mul, slice_add, sum_unitVec_mul_slice
|
unitVec π | CompOp | 2 mathmath: slice_unitVec_mul, sum_unitVec_mul_slice
|