Documentation Verification Report

Lemmas

πŸ“ Source: Mathlib/Data/Int/Cast/Lemmas.lean

Statistics

MetricCount
DefinitionscastAddHom, castRingHom, ofNatHom, zmultiplesAddHom, zmultiplesHom, zpowersHom, zpowersMulHom
7
Theoremsext_int, ext_int_iff, apply_int, eq_intCastAddHom, ext_int, ext_int_iff, intCast_left, intCast_mul_intCast_mul, intCast_mul_left, intCast_mul_right, intCast_mul_self, intCast_right, self_intCast_mul, self_intCast_mul_intCast_mul, intCast, castAddHom_int, castRingHom_int, cast_comm, cast_commute, cast_dvd_cast, cast_eq_one, cast_eq_zero, cast_inj, cast_injective, cast_ne_one, cast_ne_zero, coe_castAddHom, coe_castRingHom, commute_cast, apply_mint, ext_int, ext_int_iff, ext_mint, ext_mint_iff, ext_int, ext_int_iff, intCast, subsingleton_ringHom, eq_intCast', ext_int, intCast_mul_intCast_mul, intCast_mul_left, intCast_mul_right, eq_intCast, eq_intCast', ext_int', map_intCast, map_intCast', zmultiplesAddHom_apply, zmultiplesAddHom_symm_apply, zmultiplesHom_apply, zmultiplesHom_symm_apply, zpowersHom_apply, zpowersHom_symm_apply, zpowersMulHom_apply, zpowersMulHom_symm_apply, zsmul_eq_mul, zsmul_eq_mul'
58
Total65

AddEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
ext_int πŸ“–β€”DFunLike.coe
AddEquiv
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
EquivLike.toFunLike
instEquivLike
β€”β€”toAddMonoidHom_injective
AddMonoidHom.ext_int
ext_int_iff πŸ“–mathematicalβ€”DFunLike.coe
AddEquiv
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
EquivLike.toFunLike
instEquivLike
β€”ext_int

AddMonoidHom

Theorems

NameKindAssumesProvesValidatesDepends On
apply_int πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Int.instAddMonoid
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
instFunLike
SubNegMonoid.toZSMul
β€”zmultiplesHom_symm_apply
zmultiplesHom_apply
Equiv.apply_symm_apply
eq_intCastAddHom πŸ“–mathematicalDFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Int.instAddMonoid
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
instFunLike
AddMonoidWithOne.toOne
Int.castAddHomβ€”ext_int
Int.cast_one
ext_int πŸ“–β€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Int.instAddMonoid
instFunLike
β€”β€”RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
ext_nat'
instAddMonoidHomClass
DFunLike.ext_iff
ext
eq_on_neg
ext_int_iff πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Int.instAddMonoid
instFunLike
β€”ext_int

Commute

Theorems

NameKindAssumesProvesValidatesDepends On
intCast_left πŸ“–mathematicalβ€”Commute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
AddGroupWithOne.toIntCast
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
β€”Int.cast_commute
intCast_mul_intCast_mul πŸ“–mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”SemiconjBy.intCast_mul_intCast_mul
intCast_mul_left πŸ“–mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”β€”
intCast_mul_right πŸ“–mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”β€”
intCast_mul_self πŸ“–mathematicalβ€”Commute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”intCast_mul_left
refl
intCast_right πŸ“–mathematicalβ€”Commute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
AddGroupWithOne.toIntCast
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
β€”Int.commute_cast
self_intCast_mul πŸ“–mathematicalβ€”Commute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”intCast_mul_right
refl
self_intCast_mul_intCast_mul πŸ“–mathematicalβ€”Commute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”intCast_mul_intCast_mul
refl

Even

Theorems

NameKindAssumesProvesValidatesDepends On
intCast πŸ“–mathematicalEvenAddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
AddGroupWithOne.toIntCast
β€”map
AddMonoidHom.instAddMonoidHomClass

Int

Definitions

NameCategoryTheorems
castAddHom πŸ“–CompOp
7 mathmath: range_castAddHom, AddMonoidHom.eq_intCastAddHom, ZMod.lift_castAddHom, coe_castAddHom, ZMod.lift_comp_castAddHom, ZMod.ker_intCastAddHom, castAddHom_int
castRingHom πŸ“–CompOp
61 mathmath: NumberField.Ideal.ramificationIdx_primesOverSpanEquivMonicFactorsMod_symm_apply', quotientSpanEquivZMod_comp_Quotient_mk, Polynomial.evalβ‚‚_intCastRingHom_X, CongruenceSubgroup.Gamma_mem', IsPrimitiveRoot.minpoly_dvd_pow_mod, ModularForm.SL_slash, CongruenceSubgroup.conjGL_coe, quotientSpanNatEquivZMod_comp_Quotient_mk, Matrix.SpecialLinearGroup.map_intCast_injective, ModularGroup.sl_moeb, IsPrimitiveRoot.is_roots_of_minpoly, Matrix.SpecialLinearGroup.coe_int_neg, Polynomial.int_coeff_of_cyclotomic', coe_castRingHom, Polynomial.unique_int_coeff_of_cycl, ModularGroup.denom_apply, Polynomial.int_cyclotomic_rw, WittVector.frobeniusPoly_zmod, ModularGroup.denom_S, Polynomial.one_le_mahlerMeasure_of_ne_zero, Polynomial.IsPrimitive.Int.irreducible_iff_irreducible_map_cast, IsPrimitiveRoot.minpoly_dvd_mod_p, quotientSpanEquivZMod_comp_castRingHom, CuspForm.coe_translate, IsPrimitiveRoot.separable_minpoly_mod, EisensteinSeries.vecMul_SL2_mem_gammaSet, ModularForm.SL_slash_def, Polynomial.IsPrimitive.Int.dvd_iff_map_cast_dvd_map_cast, RingOfIntegers.ZModXQuotSpanEquivQuotSpan_mk_apply, SlashInvariantForm.slash_action_eqn_SL'', IsPrimitiveRoot.squarefree_minpoly_mod, ZMod.ker_intCastRingHom, ModularGroup.im_smul_eq_div_normSq, Polynomial.map_cyclotomic_int, witt_structure_prop, CongruenceSubgroup.mem_conjGL, Matrix.SpecialLinearGroup.map_intCast_inj, ModularGroup.tendsto_lcRow0, SL_reduction_mod_hom_val, Padic.comap_mulValuation_eq_int_padicValuation, CongruenceSubgroup.mem_conjGL', WittVector.map_frobeniusPoly, ModularGroup.exists_one_half_le_im_smul_and_norm_denom_le, ModularForm.is_invariant_one', RingHom.eq_intCast', algebraMap_int_eq, IsPrimitiveRoot.pow_isRoot_minpoly, Matrix.SpecialLinearGroup.coe_matrix_coe, ModularForm.SL_slash_apply, EisensteinSeries.eisSummand_SL2_apply, Polynomial.ringHom_evalβ‚‚_intCastRingHom, MonoidWithZeroHomClass.ext_rat_iff, MvPolynomial.C_dvd_iff_zmod, map_wittStructureInt, Polynomial.finite_mahlerMeasure_le, EisensteinSeries.eisensteinSeries_slash_apply, quotientSpanNatEquivZMod_comp_castRingHom, Polynomial.card_mahlerMeasure_le_prod, ModularGroup.smul_eq_lcRow0_add, castRingHom_int, Polynomial.int_cyclotomic_spec
ofNatHom πŸ“–CompOp
2 mathmath: MonoidWithZeroHom.ext_int_iff, MonoidHom.ext_int_iff

Theorems

NameKindAssumesProvesValidatesDepends On
castAddHom_int πŸ“–mathematicalβ€”castAddHom
Ring.toAddGroupWithOne
instRing
AddMonoidHom.id
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instAddMonoid
β€”AddMonoidHom.eq_intCastAddHom
castRingHom_int πŸ“–mathematicalβ€”castRingHom
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
instCommRing
RingHom.id
Semiring.toNonAssocSemiring
instSemiring
β€”RingHom.eq_intCast'
cast_comm πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
AddGroupWithOne.toIntCast
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
β€”Commute.eq
cast_commute
cast_commute πŸ“–mathematicalβ€”Commute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
AddGroupWithOne.toIntCast
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
β€”cast_natCast
Nat.cast_commute
cast_negSucc
cast_dvd_cast πŸ“–mathematicalβ€”semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Semiring.toNonUnitalSemiring
Ring.toSemiring
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”map_dvd
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
cast_eq_one πŸ“–mathematicalβ€”AddGroupWithOne.toIntCast
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
β€”cast_one
cast_eq_zero πŸ“–mathematicalβ€”AddGroupWithOne.toIntCast
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
AddGroupWithOne.toAddGroup
β€”Nat.cast_eq_zero
cast_natCast
neg_eq_zero
cast_negSucc
cast_zero
cast_inj πŸ“–mathematicalβ€”AddGroupWithOne.toIntCastβ€”sub_eq_zero
cast_sub
cast_eq_zero
cast_injective πŸ“–mathematicalβ€”AddGroupWithOne.toIntCastβ€”β€”
cast_ne_one πŸ“–β€”β€”β€”β€”Iff.not
cast_eq_one
cast_ne_zero πŸ“–β€”β€”β€”β€”cast_eq_zero
coe_castAddHom πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instAddMonoid
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
AddMonoidHom.instFunLike
castAddHom
AddGroupWithOne.toIntCast
β€”β€”
coe_castRingHom πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
instSemiring
NonAssocRing.toNonAssocSemiring
RingHom.instFunLike
castRingHom
AddGroupWithOne.toIntCast
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
β€”β€”
commute_cast πŸ“–mathematicalβ€”Commute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
AddGroupWithOne.toIntCast
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
β€”Commute.symm
cast_commute

MonoidHom

Theorems

NameKindAssumesProvesValidatesDepends On
apply_mint πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Multiplicative
MulOneClass.toMulOne
Multiplicative.mulOneClass
AddMonoid.toAddZeroClass
Int.instAddMonoid
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instFunLike
DivInvMonoid.toZPow
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.ofAdd
Multiplicative.toAdd
β€”zpowersHom_symm_apply
zpowersHom_apply
Equiv.apply_symm_apply
ext_int πŸ“–β€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Int.instSemiring
Monoid.toMulOneClass
instFunLike
comp
Nat.instNonAssocSemiring
RingHom.toMonoidHom
Int.ofNatHom
β€”β€”ext
DFunLike.congr_fun
neg_one_mul
map_mul
Nat.cast_one
ext_int_iff πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Int.instSemiring
Monoid.toMulOneClass
instFunLike
comp
Nat.instNonAssocSemiring
RingHom.toMonoidHom
Int.ofNatHom
β€”ext_int
ext_mint πŸ“–β€”DFunLike.coe
MonoidHom
Multiplicative
MulOneClass.toMulOne
Multiplicative.mulOneClass
AddMonoid.toAddZeroClass
Int.instAddMonoid
Monoid.toMulOneClass
instFunLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.ofAdd
β€”β€”Equiv.injective
AddMonoidHom.ext_int
ext_mint_iff πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Multiplicative
MulOneClass.toMulOne
Multiplicative.mulOneClass
AddMonoid.toAddZeroClass
Int.instAddMonoid
Monoid.toMulOneClass
instFunLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.ofAdd
β€”ext_mint

MonoidWithZeroHom

Theorems

NameKindAssumesProvesValidatesDepends On
ext_int πŸ“–β€”DFunLike.coe
MonoidWithZeroHom
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Int.instSemiring
MonoidWithZero.toMulZeroOneClass
funLike
comp
Nat.instNonAssocSemiring
RingHom.toMonoidWithZeroHom
Int.ofNatHom
β€”β€”toMonoidHom_injective
MonoidHom.ext_int
MonoidHom.ext
DFunLike.congr_fun
ext_int_iff πŸ“–mathematicalβ€”DFunLike.coe
MonoidWithZeroHom
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Int.instSemiring
MonoidWithZero.toMulZeroOneClass
funLike
comp
Nat.instNonAssocSemiring
RingHom.toMonoidWithZeroHom
Int.ofNatHom
β€”ext_int

Odd

Theorems

NameKindAssumesProvesValidatesDepends On
intCast πŸ“–mathematicalOdd
Int.instSemiring
Ring.toSemiring
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”map
RingHom.instRingHomClass

RingHom

Theorems

NameKindAssumesProvesValidatesDepends On
eq_intCast' πŸ“–mathematicalβ€”Int.castRingHomβ€”ext
eq_intCast
instRingHomClass
ext_int πŸ“–β€”β€”β€”β€”coe_addMonoidHom_injective
AddMonoidHom.ext_int
RingHomClass.toAddMonoidHomClass
instRingHomClass
map_one

RingHom.Int

Theorems

NameKindAssumesProvesValidatesDepends On
subsingleton_ringHom πŸ“–mathematicalβ€”RingHom
Semiring.toNonAssocSemiring
Int.instSemiring
β€”RingHom.ext_int

SemiconjBy

Theorems

NameKindAssumesProvesValidatesDepends On
intCast_mul_intCast_mul πŸ“–mathematicalSemiconjBy
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”β€”
intCast_mul_left πŸ“–mathematicalSemiconjBy
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”mul_left
Int.cast_commute
intCast_mul_right πŸ“–mathematicalSemiconjBy
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”mul_right
Int.commute_cast

(root)

Definitions

NameCategoryTheorems
zmultiplesAddHom πŸ“–CompOp
2 mathmath: zmultiplesAddHom_symm_apply, zmultiplesAddHom_apply
zmultiplesHom πŸ“–CompOp
5 mathmath: AddSubgroup.range_zmultiplesHom, zmultiplesHom_ker_eq, Int.tendsto_zmultiplesHom_cofinite, zmultiplesHom_apply, zmultiplesHom_symm_apply
zpowersHom πŸ“–CompOp
4 mathmath: zpowersHom_symm_apply, zpowersHom_apply, Subgroup.range_zpowersHom, zpowersHom_ker_eq
zpowersMulHom πŸ“–CompOp
2 mathmath: zpowersMulHom_symm_apply, zpowersMulHom_apply

Theorems

NameKindAssumesProvesValidatesDepends On
eq_intCast πŸ“–mathematicalβ€”DFunLike.coe
AddGroupWithOne.toIntCast
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
β€”eq_intCast'
RingHomClass.toAddMonoidHomClass
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
eq_intCast' πŸ“–mathematicalDFunLike.coe
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
AddGroupWithOne.toIntCastβ€”DFunLike.ext_iff
AddMonoidHom.eq_intCastAddHom
ext_int' πŸ“–β€”DFunLike.coeβ€”β€”DFunLike.ext
DFunLike.congr_fun
MonoidWithZeroHom.ext_int
MonoidWithZeroHom.ext_nat
map_intCast πŸ“–mathematicalβ€”DFunLike.coe
AddGroupWithOne.toIntCast
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
β€”eq_intCast
RingHom.instRingHomClass
map_intCast' πŸ“–mathematicalDFunLike.coe
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
AddGroupWithOne.toIntCastβ€”eq_intCast'
AddMonoidHom.instAddMonoidHomClass
Int.cast_one
zmultiplesAddHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Int.instAddMonoid
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddMonoidHom.instFunLike
AddEquiv
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
AddMonoidHom.add
EquivLike.toFunLike
AddEquiv.instEquivLike
zmultiplesAddHom
SubNegMonoid.toZSMul
β€”β€”
zmultiplesAddHom_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
AddEquiv
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Int.instAddMonoid
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddMonoidHom.add
AddCommGroup.toAddCommMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquiv.symm
zmultiplesAddHom
AddMonoidHom.instFunLike
β€”β€”
zmultiplesHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Int.instAddMonoid
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddMonoidHom.instFunLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
zmultiplesHom
SubNegMonoid.toZSMul
β€”β€”
zmultiplesHom_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Int.instAddMonoid
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
zmultiplesHom
AddMonoidHom.instFunLike
β€”β€”
zpowersHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Multiplicative
MulOneClass.toMulOne
Multiplicative.mulOneClass
AddMonoid.toAddZeroClass
Int.instAddMonoid
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.instFunLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
zpowersHom
DivInvMonoid.toZPow
Multiplicative.toAdd
β€”β€”
zpowersHom_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
MonoidHom
Multiplicative
MulOneClass.toMulOne
Multiplicative.mulOneClass
AddMonoid.toAddZeroClass
Int.instAddMonoid
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
zpowersHom
MonoidHom.instFunLike
Multiplicative.ofAdd
β€”β€”
zpowersMulHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Multiplicative
MulOneClass.toMulOne
Multiplicative.mulOneClass
AddMonoid.toAddZeroClass
Int.instAddMonoid
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MonoidHom.instFunLike
MulEquiv
MulOne.toMul
MonoidHom.mul
CommGroup.toCommMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
zpowersMulHom
DivInvMonoid.toZPow
Equiv
Equiv.instEquivLike
Multiplicative.toAdd
β€”β€”
zpowersMulHom_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
MonoidHom
Multiplicative
MulOneClass.toMulOne
Multiplicative.mulOneClass
AddMonoid.toAddZeroClass
Int.instAddMonoid
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
MonoidHom.mul
CommGroup.toCommMonoid
MulOne.toMul
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
zpowersMulHom
MonoidHom.instFunLike
Equiv
Equiv.instEquivLike
Multiplicative.ofAdd
β€”β€”
zsmul_eq_mul πŸ“–mathematicalβ€”SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
AddGroupWithOne.toIntCast
β€”natCast_zsmul
nsmul_eq_mul
Int.cast_natCast
negSucc_zsmul
Nat.cast_succ
add_mul
Distrib.rightDistribClass
one_mul
neg_add_rev
Int.cast_negSucc
neg_mul
zsmul_eq_mul' πŸ“–mathematicalβ€”SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
AddGroupWithOne.toIntCast
β€”zsmul_eq_mul
Commute.eq
Int.cast_commute

---

← Back to Index