Documentation Verification Report

GCD

πŸ“ Source: Mathlib/Data/Int/GCD.lean

Statistics

MetricCount
DefinitionsgcdA, gcdB, gcdA, gcdB, xgcd, xgcdAux
6
Theoremspow_eq_pow_iff_of_coprime, dvd_of_dvd_mul_left_of_gcd_one, dvd_of_dvd_mul_right_of_gcd_one, exists_gcd_one, exists_gcd_one', gcd_def, gcd_div, gcd_div_gcd_div_gcd, gcd_dvd_iff, gcd_eq_gcd_ab, gcd_eq_one_of_gcd_mul_right_eq_one_left, gcd_eq_one_of_gcd_mul_right_eq_one_right, gcd_greatest, gcd_least_linear, lcm_def, ne_zero_of_gcd, exists_mul_emod_eq_gcd, exists_mul_emod_eq_one_of_coprime, exists_mul_mod_eq_gcd, exists_mul_mod_eq_of_coprime, exists_mul_mod_eq_one_of_coprime, gcdA_zero_left, gcdA_zero_right, gcdB_zero_left, gcdB_zero_right, gcd_eq_gcd_ab, xgcdAux_fst, xgcdAux_rec, xgcdAux_val, xgcd_val, xgcd_zero_left, gcd_nsmul_eq_zero, intGCD_nsmul_eq_zero, nsmul_eq_zero_iff_of_coprime, pow_eq_one_iff_of_coprime, pow_eq_pow_iff_of_coprime, pow_gcd_eq_one, pow_intGCD_eq_one, pow_mem_range_pow_of_coprime
39
Total45

Commute

Theorems

NameKindAssumesProvesValidatesDepends On
pow_eq_pow_iff_of_coprime πŸ“–mathematicalCommute
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
Monoid.toNatPow
MonoidWithZero.toMonoid
β€”pow_one
pow_zero
zero_pow
isReduced_of_noZeroDivisors
GroupWithZero.noZeroDivisors
zpow_natCast
Nat.gcd_eq_gcd_ab
zpow_addβ‚€
mul_zpow
zpow_zpowβ‚€
mul_comm
zpow_mul
symm
pow_pow
pow_mul
pow_mul'

Int

Definitions

NameCategoryTheorems
gcdA πŸ“–CompOp
2 mathmath: gcd_eq_gcd_ab, isCoprime_gcdA
gcdB πŸ“–CompOp
2 mathmath: isCoprime_gcdB, gcd_eq_gcd_ab

Theorems

NameKindAssumesProvesValidatesDepends On
dvd_of_dvd_mul_left_of_gcd_one πŸ“–β€”β€”β€”β€”gcd_eq_gcd_ab
mul_assoc
zero_add
mul_one
dvd_mul_left
dvd_of_dvd_mul_right_of_gcd_one πŸ“–β€”β€”β€”β€”dvd_of_dvd_mul_left_of_gcd_one
mul_comm
exists_gcd_one πŸ“–β€”β€”β€”β€”gcd_div_gcd_div_gcd
exists_gcd_one' πŸ“–β€”β€”β€”β€”exists_gcd_one
gcd_def πŸ“–β€”β€”β€”β€”β€”
gcd_div πŸ“–β€”β€”β€”β€”β€”
gcd_div_gcd_div_gcd πŸ“–β€”β€”β€”β€”β€”
gcd_dvd_iff πŸ“–β€”β€”β€”β€”gcd_eq_gcd_ab
mul_assoc
gcd_eq_gcd_ab πŸ“–mathematicalβ€”gcdA
gcdB
β€”Nat.gcd_eq_gcd_ab
gcd_eq_one_of_gcd_mul_right_eq_one_left πŸ“–β€”β€”β€”β€”β€”
gcd_eq_one_of_gcd_mul_right_eq_one_right πŸ“–β€”β€”β€”β€”β€”
gcd_greatest πŸ“–β€”β€”β€”β€”β€”
gcd_least_linear πŸ“–mathematicalβ€”IsLeast
setOf
β€”β€”
lcm_def πŸ“–β€”β€”β€”β€”β€”
ne_zero_of_gcd πŸ“–β€”β€”β€”β€”Mathlib.Tactic.Contrapose.contraposeβ‚‚

Nat

Definitions

NameCategoryTheorems
gcdA πŸ“–CompOp
9 mathmath: gcdA_zero_left, Int.gcd_a_modEq, CharP.natCast_gcdA_mul_intCast_eq_gcd, CharP.intCast_mul_natCast_gcdA_eq_gcd, gcdA_zero_right, PadicInt.norm_sub_modPart_aux, xgcd_val, invOf_eq_of_coprime, gcd_eq_gcd_ab
gcdB πŸ“–CompOp
7 mathmath: powCoprime_symm_apply, gcdB_zero_left, nsmulCoprime_symm_apply, IsPGroup.powEquiv_symm_apply, xgcd_val, gcd_eq_gcd_ab, gcdB_zero_right
xgcd πŸ“–CompOp
2 mathmath: xgcd_val, xgcdAux_val
xgcdAux πŸ“–CompOp
4 mathmath: xgcd_zero_left, xgcdAux_rec, xgcdAux_val, xgcdAux_fst

Theorems

NameKindAssumesProvesValidatesDepends On
exists_mul_emod_eq_gcd πŸ“–β€”β€”β€”β€”exists_mul_mod_eq_gcd
exists_mul_emod_eq_one_of_coprime πŸ“–β€”β€”β€”β€”exists_mul_mod_eq_one_of_coprime
exists_mul_mod_eq_gcd πŸ“–β€”β€”β€”β€”LT.lt.ne'
gcd_eq_gcd_ab
Int.natCast_mod
exists_mul_mod_eq_of_coprime πŸ“–β€”β€”β€”β€”exists_mul_mod_eq_one_of_coprime
mul_assoc
one_mul
exists_mul_mod_eq_one_of_coprime πŸ“–β€”β€”β€”β€”exists_mul_mod_eq_gcd
gcdA_zero_left πŸ“–mathematicalβ€”gcdAβ€”β€”
gcdA_zero_right πŸ“–mathematicalβ€”gcdAβ€”β€”
gcdB_zero_left πŸ“–mathematicalβ€”gcdBβ€”β€”
gcdB_zero_right πŸ“–mathematicalβ€”gcdBβ€”β€”
gcd_eq_gcd_ab πŸ“–mathematicalβ€”gcdA
gcdB
β€”mul_one
add_zero
zero_add
xgcd_val
xgcdAux_val
xgcdAux_fst πŸ“–mathematicalβ€”xgcdAuxβ€”β€”
xgcdAux_rec πŸ“–mathematicalβ€”xgcdAuxβ€”LT.lt.ne'
xgcdAux.eq_1
strongRec'_spec
xgcdAux_val πŸ“–mathematicalβ€”xgcdAux
xgcd
β€”xgcd.eq_1
xgcdAux_fst
xgcd_val πŸ“–mathematicalβ€”xgcd
gcdA
gcdB
β€”β€”
xgcd_zero_left πŸ“–mathematicalβ€”xgcdAuxβ€”β€”

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
gcd_nsmul_eq_zero πŸ“–mathematicalβ€”AddMonoid.toNatSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
β€”mul_nsmul
nsmul_zero
IsAddUnit.of_nsmul_eq_zero
AddUnits.val_nsmul_eq_nsmul_val
AddUnits.val_zero
natCast_zsmul
AddUnits.ext_iff
Nat.gcd_eq_gcd_ab
add_zsmul
mul_zsmul'
zsmul_zero
zero_add
intGCD_nsmul_eq_zero πŸ“–mathematicalβ€”AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
SubNegMonoid.toZSMul
β€”gcd_nsmul_eq_zero
natCast_zsmul
Int.gcd_ofNat_negSucc
negSucc_zsmul
neg_eq_zero
Int.gcd_negSucc_ofNat
Int.gcd_negSucc_negSucc
nsmul_eq_zero_iff_of_coprime πŸ“–mathematicalβ€”AddMonoid.toNatSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
β€”gcd_nsmul_eq_zero
one_nsmul
pow_eq_one_iff_of_coprime πŸ“–mathematicalβ€”Monoid.toNatPow
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”pow_one
pow_eq_pow_iff_of_coprime πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
β€”Commute.pow_eq_pow_iff_of_coprime
Commute.all
pow_gcd_eq_one πŸ“–mathematicalβ€”Monoid.toNatPow
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”pow_mul
one_pow
IsUnit.of_pow_eq_one
Units.val_pow_eq_pow_val
Units.val_one
zpow_natCast
Units.ext_iff
Nat.gcd_eq_gcd_ab
zpow_add
zpow_mul
one_zpow
one_mul
pow_intGCD_eq_one πŸ“–mathematicalβ€”Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
DivInvMonoid.toZPow
β€”zpow_natCast
Int.gcd_ofNat_negSucc
zpow_negSucc
Int.gcd_negSucc_ofNat
Int.gcd_negSucc_negSucc
pow_mem_range_pow_of_coprime πŸ“–mathematicalβ€”Set
Set.instMembership
Set.range
Monoid.toNatPow
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
β€”pow_eq_pow_iff_of_coprime

---

← Back to Index