📁 Source: Mathlib/Data/Int/Lemmas.lean
div2_bit
ediv_emod_unique''
injOn_natAbs_Ici
injOn_natAbs_Iic
le_natCast_sub
natAbs_coe_sub_coe_le_of_le
natAbs_coe_sub_coe_lt_of_lt
natAbs_eq_iff_sq_eq
natAbs_inj_of_nonneg_of_nonneg
natAbs_inj_of_nonneg_of_nonpos
natAbs_inj_of_nonpos_of_nonneg
natAbs_inj_of_nonpos_of_nonpos
natAbs_le_iff_sq_le
natAbs_lt_iff_sq_lt
strictAntiOn_natAbs
strictMonoOn_natAbs
succ_natCast_pos
div2
bit
bit_val
div2_val
add_comm
Nat.instAtLeastTwoHAddOfNat
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instZeroLEOneClass
Nat.instCharZero
Nat.cast_zero
zero_add
abs
instLatticeInt
instAddGroup
emod_lt_abs
ediv_eq_zero_of_lt_abs
emod_abs
Set.InjOn
Set.Ici
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
StrictMonoOn.injOn
Set.Iic
StrictAntiOn.injOn
Nat.cast_le
instAddLeftMono
instZeroLEOneClass
instCharZero
natCast_natAbs
abs_sub_le_of_nonneg_of_le
instIsOrderedAddMonoid
Nat.cast_lt
abs_sub_lt_of_nonneg_of_lt
Monoid.toNatPow
instMonoid
sq
natAbs_eq_iff_mul_self_eq
sq_eq_sq₀
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
IsOrderedRing.toMulPosMono
IsStrictOrderedRing.toIsOrderedRing
neg_nonneg_of_nonpos
natAbs_le_iff_mul_self_le
natAbs_lt_iff_mul_self_lt
StrictAntiOn
Nat.instPreorder
Right.nonneg_neg_iff
covariant_swap_add_of_covariant_add
neg_lt_neg_iff
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
StrictMonoOn
---
← Back to Index