Documentation Verification Report

Log

πŸ“ Source: Mathlib/Data/Int/Log.lean

Statistics

MetricCount
Definitionsclog, clogZPowGi, zpowLogGi
3
Theoremsclog_inv, clog_mono_right, clog_natCast, clog_ofNat, clog_of_left_le_one, clog_of_one_le_right, clog_of_right_le_one, clog_of_right_le_zero, clog_one_left, clog_one_right, clog_zero_left, clog_zero_right, clog_zpow, le_zpow_iff_clog_le, log_inv, log_mono_right, log_natCast, log_ofNat, log_of_left_le_one, log_of_one_le_right, log_of_right_le_one, log_of_right_le_zero, log_one_left, log_one_right, log_zero_left, log_zero_right, log_zpow, lt_zpow_iff_log_lt, lt_zpow_succ_log_self, neg_clog_inv_eq_log, neg_log_inv_eq_clog, self_le_zpow_clog, zpow_le_iff_le_log, zpow_log_le_self, zpow_lt_iff_lt_clog, zpow_pred_clog_lt_self
36
Total39

Int

Definitions

NameCategoryTheorems
clog πŸ“–CompOp
21 mathmath: log_inv, self_le_zpow_clog, clog_mono_right, clog_of_right_le_one, clog_one_left, zpow_pred_clog_lt_self, clog_zero_left, clog_of_left_le_one, clog_of_right_le_zero, clog_of_one_le_right, clog_zpow, Real.ceil_logb_natCast, le_zpow_iff_clog_le, clog_natCast, clog_one_right, zpow_lt_iff_lt_clog, neg_log_inv_eq_clog, clog_ofNat, neg_clog_inv_eq_log, clog_inv, clog_zero_right
clogZPowGi πŸ“–CompOpβ€”
zpowLogGi πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
clog_inv πŸ“–mathematicalβ€”clog
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
log
β€”lt_or_ge
le_total
clog_of_right_le_one
inv_le_one_of_one_leβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toZeroLEOneClass
log_of_one_le_right
inv_inv
clog_of_one_le_right
one_le_invβ‚€
log_of_right_le_one
neg_neg
clog_of_right_le_zero
inv_nonpos
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
log_of_right_le_zero
neg_zero
clog_mono_right πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Preorder.toLE
clogβ€”lt_of_lt_of_le
neg_log_inv_eq_clog
neg_le_neg_iff
instAddLeftMono
covariant_swap_add_of_covariant_add
log_mono_right
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
inv_le_invβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
clog_natCast πŸ“–mathematicalβ€”clog
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Nat.clog
β€”Nat.cast_zero
clog_of_right_le_one
IsStrictOrderedRing.toZeroLEOneClass
inv_zero
Nat.floor_zero
Nat.log_zero_right
neg_zero
Nat.clog_zero_right
clog_of_one_le_right
Nat.cast_add
Nat.cast_one
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
IsCancelAdd.toIsRightCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Nat.ceil_eq_iff
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
Nat.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
IsCancelAdd.toIsLeftCancelAdd
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
clog_ofNat πŸ“–mathematicalβ€”clog
Nat.clog
β€”clog_natCast
clog_of_left_le_one πŸ“–mathematicalβ€”clogβ€”neg_log_inv_eq_clog
log_of_left_le_one
neg_zero
clog_of_one_le_right πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
clog
Nat.clog
Nat.ceil
β€”β€”
clog_of_right_le_one πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
clog
Nat.log
Nat.floor
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
β€”LE.le.eq_or_lt
clog.eq_1
inv_one
Nat.ceil_one
Nat.floor_one
Nat.log_one_right
Nat.clog_one_right
neg_zero
LT.lt.not_ge
clog_of_right_le_zero πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
clogβ€”clog.eq_1
LT.lt.not_ge
LE.le.trans_lt
zero_lt_one
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
neg_eq_zero
Nat.log_eq_zero_iff
le_or_gt
lt_of_le_of_lt
Nat.floor_le_one_of_le_one
LE.le.trans
inv_nonpos
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
zero_le_one
clog_one_left πŸ“–mathematicalβ€”clogβ€”Nat.clog_one_left
Nat.cast_zero
Nat.log_one_left
neg_zero
clog_one_right πŸ“–mathematicalβ€”clog
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”clog_of_one_le_right
le_rfl
Nat.ceil_one
Nat.clog_one_right
clog_zero_left πŸ“–mathematicalβ€”clogβ€”Nat.clog_zero_left
Nat.cast_zero
Nat.log_zero_left
neg_zero
clog_zero_right πŸ“–mathematicalβ€”clog
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”clog_of_right_le_zero
le_rfl
clog_zpow πŸ“–mathematicalβ€”clog
DivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
Semifield.toDivisionSemiring
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
β€”neg_log_inv_eq_clog
zpow_neg
log_zpow
neg_neg
le_zpow_iff_clog_le πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Preorder.toLE
DivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
clog
β€”zpow_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toZeroLEOneClass
Nat.cast_zero
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsStrictOrderedRing.toCharZero
LT.lt.trans
zero_lt_one
Nat.instZeroLEOneClass
GaloisConnection.le_iff_le
GaloisInsertion.gc
log_inv πŸ“–mathematicalβ€”log
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
clog
β€”inv_inv
clog_inv
neg_neg
log_mono_right πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Preorder.toLE
logβ€”le_total
lt_of_lt_of_le
log_of_right_le_one
neg_le_neg_iff
instAddLeftMono
covariant_swap_add_of_covariant_add
Nat.cast_le
instZeroLEOneClass
instCharZero
Nat.clog_mono_right
Nat.ceil_mono
inv_le_invβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
log_of_one_le_right
LE.le.trans
neg_nonpos
le_refl
le_antisymm
Nat.log_mono_right
Nat.floor_mono
log_natCast πŸ“–mathematicalβ€”log
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Nat.log
β€”Nat.cast_zero
log_of_right_le_one
IsStrictOrderedRing.toZeroLEOneClass
inv_zero
Nat.ceil_zero
Nat.clog_zero_right
neg_zero
Nat.log_zero_right
log_of_one_le_right
Nat.cast_add
Nat.cast_one
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
IsCancelAdd.toIsRightCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Nat.floor_natCast
log_ofNat πŸ“–mathematicalβ€”log
Nat.log
β€”log_natCast
log_of_left_le_one πŸ“–mathematicalβ€”logβ€”le_total
log_of_one_le_right
Nat.log_of_left_le_one
log_of_right_le_one
Nat.clog_of_left_le_one
neg_zero
log_of_one_le_right πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
log
Nat.log
Nat.floor
β€”β€”
log_of_right_le_one πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
log
Nat.clog
Nat.ceil
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
β€”LE.le.eq_or_lt
log.eq_1
inv_one
Nat.ceil_one
Nat.floor_one
Nat.log_one_right
Nat.clog_one_right
neg_zero
LT.lt.not_ge
log_of_right_le_zero πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
logβ€”log_of_right_le_one
LE.le.trans
zero_le_one
IsStrictOrderedRing.toZeroLEOneClass
Nat.clog_of_right_le_one
Eq.trans_le
Nat.ceil_eq_zero
inv_nonpos
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Nat.instZeroLEOneClass
neg_zero
log_one_left πŸ“–mathematicalβ€”logβ€”Nat.log_one_left
Nat.cast_zero
Nat.clog_one_left
neg_zero
log_one_right πŸ“–mathematicalβ€”log
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”log_of_one_le_right
le_rfl
Nat.floor_one
Nat.log_one_right
log_zero_left πŸ“–mathematicalβ€”logβ€”Nat.log_zero_left
Nat.cast_zero
Nat.clog_zero_left
neg_zero
log_zero_right πŸ“–mathematicalβ€”log
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”log_of_right_le_zero
le_rfl
log_zpow πŸ“–mathematicalβ€”log
DivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
Semifield.toDivisionSemiring
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
β€”log_of_one_le_right
one_le_zpowβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toZeroLEOneClass
Nat.cast_one
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsStrictOrderedRing.toCharZero
LT.lt.le
zpow_natCast
Nat.cast_pow
Nat.floor_natCast
Nat.log_pow
log_of_right_le_one
zpow_le_one_of_nonposβ‚€
neg_nonpos
instAddLeftMono
zpow_neg
inv_inv
Nat.ceil_natCast
Nat.clog_pow
lt_zpow_iff_log_lt πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
log
β€”GaloisConnection.lt_iff_lt
zpow_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toZeroLEOneClass
Nat.cast_zero
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsStrictOrderedRing.toCharZero
LT.lt.trans
zero_lt_one
Nat.instZeroLEOneClass
GaloisCoinsertion.gc
lt_zpow_succ_log_self πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
Semifield.toDivisionSemiring
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
log
β€”le_or_gt
log_of_right_le_zero
zero_add
zpow_one
LE.le.trans_lt
LT.lt.trans_le
zero_lt_one
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Nat.cast_one
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
LT.lt.le
log_of_one_le_right
zpow_natCast
Nat.cast_pow
Nat.lt_of_floor_lt
Nat.lt_pow_succ_log_self
log_of_right_le_one
one_lt_invβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Nat.clog_pos
Nat.one_lt_cast
Nat.le_ceil
neg_add_eq_sub
neg_sub
zpow_neg
lt_inv_commβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
pow_pos
Nat.cast_pos
instNontrivialOfCharZero
LT.lt.trans
Nat.instZeroLEOneClass
Nat.lt_ceil
Nat.pow_pred_clog_lt_self
neg_clog_inv_eq_log πŸ“–mathematicalβ€”clog
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
log
β€”clog_inv
neg_neg
neg_log_inv_eq_clog πŸ“–mathematicalβ€”log
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
clog
β€”log_inv
neg_neg
self_le_zpow_clog πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
Semifield.toDivisionSemiring
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
clog
β€”le_or_gt
clog_of_right_le_zero
zpow_zero
LE.le.trans
zero_le_one
IsStrictOrderedRing.toZeroLEOneClass
neg_log_inv_eq_clog
zpow_neg
le_inv_commβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
zpow_pos
Nat.cast_pos
IsStrictOrderedRing.toIsOrderedRing
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
LE.le.trans_lt
Nat.instZeroLEOneClass
zpow_log_le_self
inv_pos
zpow_le_iff_le_log πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Preorder.toLE
DivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
log
β€”GaloisConnection.le_iff_le
zpow_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toZeroLEOneClass
Nat.cast_zero
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsStrictOrderedRing.toCharZero
LT.lt.trans
zero_lt_one
Nat.instZeroLEOneClass
GaloisCoinsertion.gc
zpow_log_le_self πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Preorder.toLE
DivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
log
β€”le_total
log_of_one_le_right
zpow_natCast
Nat.cast_pow
Nat.le_floor_iff
LT.lt.le
Nat.pow_log_le_self
LT.lt.ne'
Nat.floor_pos
log_of_right_le_one
zpow_neg
inv_le_of_inv_leβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Nat.ceil_le
Nat.le_pow_clog
zpow_lt_iff_lt_clog πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
clog
β€”zpow_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toZeroLEOneClass
Nat.cast_zero
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsStrictOrderedRing.toCharZero
LT.lt.trans
zero_lt_one
Nat.instZeroLEOneClass
GaloisConnection.lt_iff_lt
GaloisInsertion.gc
zpow_pred_clog_lt_self πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
clog
β€”neg_log_inv_eq_clog
neg_add'
zpow_neg
inv_lt_commβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
zpow_pos
IsStrictOrderedRing.toZeroLEOneClass
Nat.cast_pos
IsStrictOrderedRing.toIsOrderedRing
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
LE.le.trans_lt
zero_le_one
Nat.instZeroLEOneClass
lt_zpow_succ_log_self

---

← Back to Index