Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Data/List/Basic.lean

Statistics

MetricCount
DefinitionsinstDecidablePredForall, instInsertOfDecidableEq_mathlib, instSingletonList, uniqueOfIsEmpty
4
Theoremseq_or_ne_mem_of_mem, list_map, list_map, exists_mem_and_apply_eq_iff, list_map, list_map, list_map, list_map, map, map_iff, of_map, imp, idxOf_eq_of_mem, idxOf_le, mem_iff_idxOf_lt_length, idxOf_add_length_le, idxOf_le, disjoint_left, disjoint_right, antisymm, cons_cons, of_cons_of_ne, append_cons_inj_of_notMem, append_eq_has_append, append_left_injective, append_right_injective, append_subset_of_subset_of_subset, bind_eq_flatMap, choose_mem, choose_property, choose_spec, comp_map, concat_eq_reverse_cons, cons_head!_tail, cons_head?_tail, cons_injective, cons_sublist_cons', cons_subset_of_subset_of_mem, disjoint_map, disjoint_pmap, disjoint_reverse_left, disjoint_reverse_right, doubleton_eq, dropLast_append_getLast, dropLast_append_getLast?, eq_cons_of_length_one, eq_cons_of_mem_head?, eq_nil_or_concat', eq_of_mem_map_const, eq_replicate_length, erase_getElem, exists_mem_cons_iff, exists_mem_cons_of, exists_mem_cons_of_exists, exists_mem_iff_get, exists_mem_iff_getElem, exists_of_length_succ, ext_getElem!, ext_getElem?', ext_getElem?_iff', ext_get_iff, filterMap_congr, filterMap_eq_flatMap_toList, filterMap_eq_map_iff_forall_eq_some, filter_attach, filter_attach', filter_comm, filter_eq_foldr, filter_false, filter_singleton, filter_subset', filter_true, flatMap_congr, flatMap_pure_eq_map, foldl1_eq_foldr1, foldlM_eq_foldl, foldl_assoc_comm_cons, foldl_concat, foldl_eq_foldr, foldl_eq_foldr', foldl_eq_of_comm', foldl_eq_of_comm_of_assoc, foldl_ext, foldl_fixed, foldl_fixed', foldl_homβ‚‚, foldl_op_eq_op_foldr_assoc, foldrM_eq_foldr, foldr_concat, foldr_eq_of_comm', foldr_ext, foldr_fixed, foldr_fixed', foldr_homβ‚‚, forall_append, forall_cons, forall_iff_forall_mem, forall_map_iff, forall_mem_iff_get, forall_mem_iff_getElem, forall_mem_of_forall_mem_cons, getElem?_idxOf, getElem?_length, getElem?_surjective_iff, getElem_fin_surjective_iff, getElem_map_rev, getElem_set_of_ne, getLast?_append_cons, getLast?_append_of_ne_nil, getLast?_eq_getLast_of_ne_nil, getLast?_flatten_replicate, getLastI_eq_getLast?, getLastI_eq_getLast?_getD, getLast_append_of_right_ne_nil, getLast_append_singleton, getLast_concat', getLast_congr, getLast_replicate_succ, getLast_singleton', get_attach, get_eq_getElem?, get_length_sub_one, get_reverse', get_surjective_iff, get_tail, head!_append, head!_cons, head!_eq_head?, head!_eq_head?_getD, head!_mem_head?, head!_mem_self, head!_nil, head?_append_of_ne_nil, head?_flatten_replicate, head_eq_getElem_zero, idxOf_append_of_mem, idxOf_append_of_notMem, idxOf_cons_eq, idxOf_cons_ne, idxOf_eq_length_iff, idxOf_eq_zero_iff_eq_nil_or_head_eq, idxOf_eq_zero_iff_head_eq, idxOf_get, idxOf_getLast, idxOf_inj, idxOf_of_notMem, infix_flatMap_of_mem, injective_foldl_comp, insert_neg, insert_pos, instAssociativeAppend_mathlib, instLawfulIdentityAppendNil_mathlib, instLawfulSingleton_mathlib, left_le_of_mem_range', length_eq_four, length_eq_length_filter_add, length_eq_three, length_eq_two, length_eraseIdx_add_one, length_eraseP_add_one, length_erase_add_one, length_injective, length_injective_iff, length_pos_iff_ne_nil, length_pos_of_ne_nil, lookup_graph, map_bijective_iff, map_comp_map, map_diff, map_eq_map, map_erase, map_filter, map_foldl_erase, map_injective_iff, map_involutive_iff, map_leftInverse_iff, map_reverseAux, map_rightInverse_iff, map_subset_iff, map_surjective_iff, mem_dropLast_iff_idxOf_lt, mem_dropLast_of_mem_of_ne_getLast, mem_dropLast_of_mem_of_ne_getLast?, mem_dropLast_of_mem_of_ne_getLastD, mem_filter_of_mem, mem_getLast?_append_of_mem_getLast?, mem_getLast?_cons, mem_getLast?_eq_getLast, mem_head?_append_of_mem_head?, mem_map_of_injective, mem_map_of_involutive, mem_of_mem_filter, mem_pair, mem_pure, mem_take_iff_idxOf_lt, monotone_filter_right, of_mem_filter, or_exists_of_exists_mem_cons, perm_reverse, range'_0, replicate_add, replicate_left_inj, replicate_left_injective, replicate_right_inj, replicate_right_inj', replicate_right_injective, replicate_subset_singleton, reverse_bijective, reverse_concat', reverse_cons', reverse_foldl, reverse_injective, reverse_involutive, reverse_perm', reverse_surjective, set_of_mem_cons, singleton_eq, singleton_injective, sublist_cons_of_sublist, sublist_singleton, subset_singleton_iff, succ_idxOf_lt_length_of_mem_dropLast, surjective_head!, surjective_head?, surjective_tail, tail_append_singleton_of_ne_nil
226
Total230

Decidable.List

Theorems

NameKindAssumesProvesValidatesDepends On
eq_or_ne_mem_of_mem πŸ“–β€”β€”β€”β€”β€”

Function.Bijective

Theorems

NameKindAssumesProvesValidatesDepends On
list_map πŸ“–β€”Function.Bijectiveβ€”β€”Function.Injective.list_map
Function.Surjective.list_map

Function.Injective

Theorems

NameKindAssumesProvesValidatesDepends On
list_map πŸ“–β€”β€”β€”β€”β€”

Function.Involutive

Theorems

NameKindAssumesProvesValidatesDepends On
exists_mem_and_apply_eq_iff πŸ“–β€”Function.Involutiveβ€”β€”β€”
list_map πŸ“–β€”Function.Involutiveβ€”β€”Function.LeftInverse.list_map

Function.LeftInverse

Theorems

NameKindAssumesProvesValidatesDepends On
list_map πŸ“–β€”β€”β€”β€”β€”

Function.RightInverse

Theorems

NameKindAssumesProvesValidatesDepends On
list_map πŸ“–β€”β€”β€”β€”Function.LeftInverse.list_map

Function.Surjective

Theorems

NameKindAssumesProvesValidatesDepends On
list_map πŸ“–β€”β€”β€”β€”hasRightInverse
Function.RightInverse.list_map

List

Definitions

NameCategoryTheorems
instDecidablePredForall πŸ“–CompOpβ€”
instInsertOfDecidableEq_mathlib πŸ“–CompOp
6 mathmath: Multiset.coe_ndinsert, doubleton_eq, insert_neg, instLawfulSingleton_mathlib, insert_eq_ite, insert_pos
instSingletonList πŸ“–CompOp
3 mathmath: singleton_eq, doubleton_eq, instLawfulSingleton_mathlib
uniqueOfIsEmpty πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
append_cons_inj_of_notMem πŸ“–β€”β€”β€”β€”β€”
append_eq_has_append πŸ“–β€”β€”β€”β€”β€”
append_left_injective πŸ“–β€”β€”β€”β€”β€”
append_right_injective πŸ“–β€”β€”β€”β€”β€”
append_subset_of_subset_of_subset πŸ“–β€”β€”β€”β€”β€”
bind_eq_flatMap πŸ“–mathematicalβ€”instMonadβ€”β€”
choose_mem πŸ“–mathematicalβ€”chooseβ€”choose_spec
choose_property πŸ“–mathematicalβ€”chooseβ€”choose_spec
choose_spec πŸ“–mathematicalβ€”chooseβ€”β€”
comp_map πŸ“–β€”β€”β€”β€”β€”
concat_eq_reverse_cons πŸ“–β€”β€”β€”β€”β€”
cons_head!_tail πŸ“–β€”β€”β€”β€”cons_head?_tail
head!_mem_head?
cons_head?_tail πŸ“–β€”β€”β€”β€”β€”
cons_injective πŸ“–β€”β€”β€”β€”β€”
cons_sublist_cons' πŸ“–β€”β€”β€”β€”β€”
cons_subset_of_subset_of_mem πŸ“–β€”β€”β€”β€”β€”
disjoint_map πŸ“–β€”β€”β€”β€”disjoint_pmap
disjoint_pmap πŸ“–β€”β€”β€”β€”β€”
disjoint_reverse_left πŸ“–β€”β€”β€”β€”Perm.disjoint_left
disjoint_reverse_right πŸ“–β€”β€”β€”β€”Perm.disjoint_right
doubleton_eq πŸ“–mathematicalβ€”instInsertOfDecidableEq_mathlib
instSingletonList
β€”insert_neg
singleton_eq
dropLast_append_getLast πŸ“–β€”β€”β€”β€”β€”
dropLast_append_getLast? πŸ“–β€”β€”β€”β€”β€”
eq_cons_of_length_one πŸ“–β€”β€”β€”β€”β€”
eq_cons_of_mem_head? πŸ“–β€”β€”β€”β€”β€”
eq_nil_or_concat' πŸ“–β€”β€”β€”β€”β€”
eq_of_mem_map_const πŸ“–β€”β€”β€”β€”β€”
eq_replicate_length πŸ“–β€”β€”β€”β€”instIsEmptyFalse
erase_getElem πŸ“–β€”β€”β€”β€”β€”
exists_mem_cons_iff πŸ“–β€”β€”β€”β€”β€”
exists_mem_cons_of πŸ“–β€”β€”β€”β€”β€”
exists_mem_cons_of_exists πŸ“–β€”β€”β€”β€”β€”
exists_mem_iff_get πŸ“–β€”β€”β€”β€”exists_mem_iff_getElem
exists_mem_iff_getElem πŸ“–β€”β€”β€”β€”β€”
exists_of_length_succ πŸ“–β€”β€”β€”β€”β€”
ext_getElem! πŸ“–β€”β€”β€”β€”β€”
ext_getElem?' πŸ“–β€”β€”β€”β€”β€”
ext_getElem?_iff' πŸ“–β€”β€”β€”β€”ext_getElem?'
ext_get_iff πŸ“–β€”β€”β€”β€”β€”
filterMap_congr πŸ“–β€”β€”β€”β€”β€”
filterMap_eq_flatMap_toList πŸ“–β€”β€”β€”β€”β€”
filterMap_eq_map_iff_forall_eq_some πŸ“–β€”β€”β€”β€”instIsEmptyFalse
filterMap_congr
filter_attach πŸ“–mathematicalβ€”Subtype.map
mem_of_mem_filter
β€”map_injective_iff
Subtype.coe_injective
mem_of_mem_filter
filter_attach' πŸ“–mathematicalβ€”Subtype.map
mem_of_mem_filter
β€”map_injective_iff
Subtype.coe_injective
mem_of_mem_filter
map_filter
filter_comm πŸ“–β€”β€”β€”β€”β€”
filter_eq_foldr πŸ“–β€”β€”β€”β€”β€”
filter_false πŸ“–β€”β€”β€”β€”β€”
filter_singleton πŸ“–β€”β€”β€”β€”β€”
filter_subset' πŸ“–β€”β€”β€”β€”β€”
filter_true πŸ“–β€”β€”β€”β€”β€”
flatMap_congr πŸ“–β€”β€”β€”β€”β€”
flatMap_pure_eq_map πŸ“–mathematicalβ€”instAlternativeMonad_mathlibβ€”β€”
foldl1_eq_foldr1 πŸ“–β€”β€”β€”β€”β€”
foldlM_eq_foldl πŸ“–β€”β€”β€”β€”β€”
foldl_assoc_comm_cons πŸ“–β€”β€”β€”β€”β€”
foldl_concat πŸ“–β€”β€”β€”β€”β€”
foldl_eq_foldr πŸ“–β€”β€”β€”β€”foldl_eq_of_comm_of_assoc
foldl_eq_foldr' πŸ“–β€”β€”β€”β€”foldl_eq_of_comm'
foldl_eq_of_comm' πŸ“–β€”β€”β€”β€”β€”
foldl_eq_of_comm_of_assoc πŸ“–β€”β€”β€”β€”instRightCommutativeOfCommutativeOfAssociative
RightCommutative.right_comm
foldl_ext πŸ“–β€”β€”β€”β€”β€”
foldl_fixed πŸ“–β€”β€”β€”β€”foldl_fixed'
foldl_fixed' πŸ“–β€”β€”β€”β€”β€”
foldl_homβ‚‚ πŸ“–β€”β€”β€”β€”β€”
foldl_op_eq_op_foldr_assoc πŸ“–β€”β€”β€”β€”β€”
foldrM_eq_foldr πŸ“–β€”β€”β€”β€”β€”
foldr_concat πŸ“–β€”β€”β€”β€”β€”
foldr_eq_of_comm' πŸ“–β€”β€”β€”β€”β€”
foldr_ext πŸ“–β€”β€”β€”β€”β€”
foldr_fixed πŸ“–β€”β€”β€”β€”foldr_fixed'
foldr_fixed' πŸ“–β€”β€”β€”β€”β€”
foldr_homβ‚‚ πŸ“–β€”β€”β€”β€”β€”
forall_append πŸ“–mathematicalβ€”Forallβ€”β€”
forall_cons πŸ“–mathematicalβ€”Forallβ€”β€”
forall_iff_forall_mem πŸ“–mathematicalβ€”Forallβ€”forall_cons
forall_map_iff πŸ“–mathematicalβ€”Forallβ€”β€”
forall_mem_iff_get πŸ“–β€”β€”β€”β€”forall_mem_iff_getElem
forall_mem_iff_getElem πŸ“–β€”β€”β€”β€”forall_swap
forall_mem_of_forall_mem_cons πŸ“–β€”β€”β€”β€”β€”
getElem?_idxOf πŸ“–β€”β€”β€”β€”β€”
getElem?_length πŸ“–β€”β€”β€”β€”β€”
getElem?_surjective_iff πŸ“–β€”β€”β€”β€”β€”
getElem_fin_surjective_iff πŸ“–β€”β€”β€”β€”get_surjective_iff
getElem_map_rev πŸ“–β€”β€”β€”β€”β€”
getElem_set_of_ne πŸ“–β€”β€”β€”β€”β€”
getLast?_append_cons πŸ“–β€”β€”β€”β€”β€”
getLast?_append_of_ne_nil πŸ“–β€”β€”β€”β€”getLast?_append_cons
getLast?_eq_getLast_of_ne_nil πŸ“–β€”β€”β€”β€”β€”
getLast?_flatten_replicate πŸ“–β€”β€”β€”β€”head?_flatten_replicate
getLastI_eq_getLast? πŸ“–mathematicalβ€”getLastIβ€”getLastI_eq_getLast?_getD
getLastI_eq_getLast?_getD πŸ“–mathematicalβ€”getLastIβ€”β€”
getLast_append_of_right_ne_nil πŸ“–β€”β€”β€”β€”β€”
getLast_append_singleton πŸ“–β€”β€”β€”β€”β€”
getLast_concat' πŸ“–β€”β€”β€”β€”β€”
getLast_congr πŸ“–β€”β€”β€”β€”β€”
getLast_replicate_succ πŸ“–β€”β€”β€”β€”getLast_append_singleton
getLast_singleton' πŸ“–β€”β€”β€”β€”β€”
get_attach πŸ“–β€”β€”β€”β€”β€”
get_eq_getElem? πŸ“–β€”β€”β€”β€”β€”
get_length_sub_one πŸ“–β€”β€”β€”β€”β€”
get_reverse' πŸ“–β€”β€”β€”β€”β€”
get_surjective_iff πŸ“–β€”β€”β€”β€”β€”
get_tail πŸ“–β€”β€”β€”β€”β€”
head!_append πŸ“–β€”β€”β€”β€”β€”
head!_cons πŸ“–β€”β€”β€”β€”β€”
head!_eq_head? πŸ“–β€”β€”β€”β€”head!_eq_head?_getD
head!_eq_head?_getD πŸ“–β€”β€”β€”β€”β€”
head!_mem_head? πŸ“–β€”β€”β€”β€”β€”
head!_mem_self πŸ“–β€”β€”β€”β€”cons_head!_tail
head!_nil πŸ“–β€”β€”β€”β€”β€”
head?_append_of_ne_nil πŸ“–β€”β€”β€”β€”β€”
head?_flatten_replicate πŸ“–β€”β€”β€”β€”β€”
head_eq_getElem_zero πŸ“–β€”β€”β€”β€”β€”
idxOf_append_of_mem πŸ“–β€”β€”β€”β€”β€”
idxOf_append_of_notMem πŸ“–β€”β€”β€”β€”β€”
idxOf_cons_eq πŸ“–β€”β€”β€”β€”β€”
idxOf_cons_ne πŸ“–β€”β€”β€”β€”β€”
idxOf_eq_length_iff πŸ“–β€”β€”β€”β€”β€”
idxOf_eq_zero_iff_eq_nil_or_head_eq πŸ“–β€”β€”β€”β€”idxOf_of_notMem
idxOf_eq_zero_iff_head_eq πŸ“–β€”β€”β€”β€”β€”
idxOf_get πŸ“–β€”β€”β€”β€”β€”
idxOf_getLast πŸ“–β€”β€”β€”β€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
mem_dropLast_iff_idxOf_lt
idxOf_inj πŸ“–β€”β€”β€”β€”β€”
idxOf_of_notMem πŸ“–β€”β€”β€”β€”idxOf_eq_length_iff
infix_flatMap_of_mem πŸ“–β€”β€”β€”β€”β€”
injective_foldl_comp πŸ“–β€”β€”β€”β€”β€”
insert_neg πŸ“–mathematicalβ€”instInsertOfDecidableEq_mathlibβ€”β€”
insert_pos πŸ“–mathematicalβ€”instInsertOfDecidableEq_mathlibβ€”β€”
instAssociativeAppend_mathlib πŸ“–β€”β€”β€”β€”β€”
instLawfulIdentityAppendNil_mathlib πŸ“–β€”β€”β€”β€”β€”
instLawfulSingleton_mathlib πŸ“–mathematicalβ€”instInsertOfDecidableEq_mathlib
instSingletonList
β€”β€”
left_le_of_mem_range' πŸ“–β€”β€”β€”β€”β€”
length_eq_four πŸ“–β€”β€”β€”β€”β€”
length_eq_length_filter_add πŸ“–β€”β€”β€”β€”β€”
length_eq_three πŸ“–β€”β€”β€”β€”β€”
length_eq_two πŸ“–β€”β€”β€”β€”β€”
length_eraseIdx_add_one πŸ“–β€”β€”β€”β€”β€”
length_eraseP_add_one πŸ“–β€”β€”β€”β€”β€”
length_erase_add_one πŸ“–β€”β€”β€”β€”length_eraseP_add_one
length_injective πŸ“–β€”β€”β€”β€”length_injective_iff
length_injective_iff πŸ“–β€”β€”β€”β€”β€”
length_pos_iff_ne_nil πŸ“–β€”β€”β€”β€”length_pos_of_ne_nil
length_pos_of_ne_nil πŸ“–β€”β€”β€”β€”β€”
lookup_graph πŸ“–β€”β€”β€”β€”β€”
map_bijective_iff πŸ“–mathematicalβ€”Function.Bijectiveβ€”β€”
map_comp_map πŸ“–β€”β€”β€”β€”comp_map
map_diff πŸ“–β€”β€”β€”β€”map_foldl_erase
map_eq_map πŸ“–β€”β€”β€”β€”β€”
map_erase πŸ“–β€”β€”β€”β€”β€”
map_filter πŸ“–β€”β€”β€”β€”β€”
map_foldl_erase πŸ“–β€”β€”β€”β€”map_erase
map_injective_iff πŸ“–β€”β€”β€”β€”Function.Injective.list_map
map_involutive_iff πŸ“–mathematicalβ€”Function.Involutiveβ€”map_leftInverse_iff
map_leftInverse_iff πŸ“–β€”β€”β€”β€”Function.LeftInverse.list_map
map_reverseAux πŸ“–β€”β€”β€”β€”β€”
map_rightInverse_iff πŸ“–β€”β€”β€”β€”map_leftInverse_iff
map_subset_iff πŸ“–β€”β€”β€”β€”β€”
map_surjective_iff πŸ“–β€”β€”β€”β€”singleton_injective
Function.Surjective.list_map
mem_dropLast_iff_idxOf_lt πŸ“–β€”β€”β€”β€”mem_take_iff_idxOf_lt
mem_dropLast_of_mem_of_ne_getLast πŸ“–β€”β€”β€”β€”β€”
mem_dropLast_of_mem_of_ne_getLast? πŸ“–β€”β€”β€”β€”mem_dropLast_of_mem_of_ne_getLast
mem_dropLast_of_mem_of_ne_getLastD πŸ“–β€”β€”β€”β€”mem_dropLast_of_mem_of_ne_getLast
mem_filter_of_mem πŸ“–β€”β€”β€”β€”β€”
mem_getLast?_append_of_mem_getLast? πŸ“–β€”β€”β€”β€”β€”
mem_getLast?_cons πŸ“–β€”β€”β€”β€”β€”
mem_getLast?_eq_getLast πŸ“–β€”β€”β€”β€”β€”
mem_head?_append_of_mem_head? πŸ“–β€”β€”β€”β€”β€”
mem_map_of_injective πŸ“–β€”β€”β€”β€”β€”
mem_map_of_involutive πŸ“–β€”Function.Involutiveβ€”β€”Function.Involutive.exists_mem_and_apply_eq_iff
mem_of_mem_filter πŸ“–β€”β€”β€”β€”filter_subset'
mem_pair πŸ“–β€”β€”β€”β€”β€”
mem_pure πŸ“–mathematicalβ€”instAlternativeMonad_mathlibβ€”β€”
mem_take_iff_idxOf_lt πŸ“–β€”β€”β€”β€”IsPrefix.mem_iff_idxOf_lt_length
monotone_filter_right πŸ“–β€”β€”β€”β€”β€”
of_mem_filter πŸ“–β€”β€”β€”β€”β€”
or_exists_of_exists_mem_cons πŸ“–β€”β€”β€”β€”β€”
perm_reverse πŸ“–β€”β€”β€”β€”β€”
range'_0 πŸ“–β€”β€”β€”β€”β€”
replicate_add πŸ“–β€”β€”β€”β€”β€”
replicate_left_inj πŸ“–β€”β€”β€”β€”replicate_left_injective
replicate_left_injective πŸ“–β€”β€”β€”β€”β€”
replicate_right_inj πŸ“–β€”β€”β€”β€”replicate_right_injective
replicate_right_inj' πŸ“–β€”β€”β€”β€”β€”
replicate_right_injective πŸ“–β€”β€”β€”β€”β€”
replicate_subset_singleton πŸ“–β€”β€”β€”β€”β€”
reverse_bijective πŸ“–mathematicalβ€”Function.Bijectiveβ€”Function.Involutive.bijective
reverse_involutive
reverse_concat' πŸ“–β€”β€”β€”β€”β€”
reverse_cons' πŸ“–β€”β€”β€”β€”β€”
reverse_foldl πŸ“–β€”β€”β€”β€”β€”
reverse_injective πŸ“–β€”β€”β€”β€”Function.Involutive.injective
reverse_involutive
reverse_involutive πŸ“–mathematicalβ€”Function.Involutiveβ€”β€”
reverse_perm' πŸ“–β€”β€”β€”β€”β€”
reverse_surjective πŸ“–β€”β€”β€”β€”Function.Involutive.surjective
reverse_involutive
set_of_mem_cons πŸ“–mathematicalβ€”setOf
Set
Set.instInsert
β€”Set.ext
singleton_eq πŸ“–mathematicalβ€”instSingletonListβ€”β€”
singleton_injective πŸ“–β€”β€”β€”β€”β€”
sublist_cons_of_sublist πŸ“–β€”β€”β€”β€”β€”
sublist_singleton πŸ“–β€”β€”β€”β€”β€”
subset_singleton_iff πŸ“–β€”β€”β€”β€”β€”
succ_idxOf_lt_length_of_mem_dropLast πŸ“–β€”β€”β€”β€”β€”
surjective_head! πŸ“–β€”β€”β€”β€”β€”
surjective_head? πŸ“–β€”β€”β€”β€”β€”
surjective_tail πŸ“–β€”β€”β€”β€”β€”
tail_append_singleton_of_ne_nil πŸ“–β€”β€”β€”β€”β€”

List.Disjoint

Theorems

NameKindAssumesProvesValidatesDepends On
map πŸ“–β€”β€”β€”β€”List.disjoint_map
map_iff πŸ“–β€”β€”β€”β€”of_map
map
of_map πŸ“–β€”β€”β€”β€”β€”

List.Forall

Theorems

NameKindAssumesProvesValidatesDepends On
imp πŸ“–β€”List.Forallβ€”β€”β€”

List.IsPrefix

Theorems

NameKindAssumesProvesValidatesDepends On
idxOf_eq_of_mem πŸ“–β€”β€”β€”β€”List.idxOf_append_of_mem
idxOf_le πŸ“–β€”β€”β€”β€”β€”
mem_iff_idxOf_lt_length πŸ“–β€”β€”β€”β€”idxOf_eq_of_mem
idxOf_le

List.IsSuffix

Theorems

NameKindAssumesProvesValidatesDepends On
idxOf_add_length_le πŸ“–β€”β€”β€”β€”β€”
idxOf_le πŸ“–β€”β€”β€”β€”β€”

List.Perm

Theorems

NameKindAssumesProvesValidatesDepends On
disjoint_left πŸ“–β€”β€”β€”β€”β€”
disjoint_right πŸ“–β€”β€”β€”β€”β€”

List.Sublist

Theorems

NameKindAssumesProvesValidatesDepends On
antisymm πŸ“–β€”β€”β€”β€”β€”
cons_cons πŸ“–β€”β€”β€”β€”β€”
of_cons_of_ne πŸ“–β€”β€”β€”β€”β€”

---

← Back to Index