Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Data/List/Perm/Basic.lean

Statistics

MetricCount
Definitions0
TheoremseraseIdx_of_getElem?_eq, flatMap, flatMap_left, foldl_eq, foldl_op_eq, foldr_eq, foldr_op_eq, insertIdx, insertIdx_of_le, product, product_left, product_right, subset_congr_left, subset_congr_right, count_eq_count_filter_add, eq_map_comp_perm, flatMap_append_perm, forallβ‚‚_comp_perm_eq_perm_comp_forallβ‚‚, getElem_cons_eraseIdx_perm, instSymmPerm_mathlib, map_append_flatMap_perm, map_perm_map_iff, perm_comp_forallβ‚‚, perm_comp_perm, perm_eraseIdx_of_getElem?_eq, perm_insertIdx_iff, perm_insertIdx_iff_of_le, perm_option_toList, perm_replicate_append_replicate, perm_rfl, rel_perm, rel_perm_imp, set_perm_cons_eraseIdx
33
Total33

List

Theorems

NameKindAssumesProvesValidatesDepends On
count_eq_count_filter_add πŸ“–β€”β€”β€”β€”β€”
eq_map_comp_perm πŸ“–mathematicalβ€”Relation.Compβ€”Relation.comp_eq_fun
forallβ‚‚_comp_perm_eq_perm_comp_forallβ‚‚
flatMap_append_perm πŸ“–β€”β€”β€”β€”β€”
forallβ‚‚_comp_perm_eq_perm_comp_forallβ‚‚ πŸ“–mathematicalβ€”Relation.Compβ€”Forallβ‚‚.flip
perm_comp_forallβ‚‚
getElem_cons_eraseIdx_perm πŸ“–β€”β€”β€”β€”set_perm_cons_eraseIdx
instSymmPerm_mathlib πŸ“–β€”β€”β€”β€”β€”
map_append_flatMap_perm πŸ“–β€”β€”β€”β€”flatMap_append_perm
map_perm_map_iff πŸ“–β€”β€”β€”β€”eq_map_comp_perm
perm_comp_forallβ‚‚ πŸ“–mathematicalβ€”Relation.Compβ€”β€”
perm_comp_perm πŸ“–mathematicalβ€”Relation.Compβ€”β€”
perm_eraseIdx_of_getElem?_eq πŸ“–β€”β€”β€”β€”rel_congr_left
instSymmPerm_mathlib
instIsTransOfTrans
getElem_cons_eraseIdx_perm
rel_congr_right
perm_insertIdx_iff πŸ“–β€”β€”β€”β€”perm_insertIdx_iff_of_le
perm_insertIdx_iff_of_le πŸ“–β€”β€”β€”β€”rel_congr_left
instSymmPerm_mathlib
instIsTransOfTrans
rel_congr_right
perm_option_toList πŸ“–β€”β€”β€”β€”β€”
perm_replicate_append_replicate πŸ“–β€”β€”β€”β€”Decidable.and_forall_ne
not_imp_not
perm_rfl πŸ“–β€”β€”β€”β€”β€”
rel_perm πŸ“–mathematicalRelator.BiUniqueRelator.LiftFunβ€”rel_perm_imp
Relator.LeftUnique.flip
Forallβ‚‚.flip
rel_perm_imp πŸ“–mathematicalRelator.RightUniqueRelator.LiftFunβ€”Relation.comp_assoc
forallβ‚‚_comp_perm_eq_perm_comp_forallβ‚‚
right_unique_forallβ‚‚'
set_perm_cons_eraseIdx πŸ“–β€”β€”β€”β€”insertIdx_eraseIdx_self

List.Perm

Theorems

NameKindAssumesProvesValidatesDepends On
eraseIdx_of_getElem?_eq πŸ“–β€”β€”β€”β€”List.perm_eraseIdx_of_getElem?_eq
flatMap πŸ“–β€”β€”β€”β€”flatMap_left
flatMap_left πŸ“–β€”β€”β€”β€”List.forallβ‚‚_map_right_iff
List.forallβ‚‚_map_left_iff
List.forallβ‚‚_same
foldl_eq πŸ“–β€”β€”β€”β€”RightCommutative.right_comm
foldl_op_eq πŸ“–β€”β€”β€”β€”foldl_eq
instRightCommutativeOfCommutativeOfAssociative
foldr_eq πŸ“–β€”β€”β€”β€”LeftCommutative.left_comm
foldr_op_eq πŸ“–β€”β€”β€”β€”foldr_eq
instLeftCommutativeOfCommutativeOfAssociative
insertIdx πŸ“–β€”β€”β€”β€”List.perm_insertIdx_iff
insertIdx_of_le πŸ“–β€”β€”β€”β€”List.perm_insertIdx_iff_of_le
product πŸ“–β€”β€”β€”β€”product_right
product_left
product_left πŸ“–β€”β€”β€”β€”flatMap_left
product_right πŸ“–β€”β€”β€”β€”β€”
subset_congr_left πŸ“–β€”β€”β€”β€”β€”
subset_congr_right πŸ“–β€”β€”β€”β€”β€”

---

← Back to Index