Documentation Verification Report

Rotate

πŸ“ Source: Mathlib/Data/List/Rotate.lean

Statistics

MetricCount
DefinitionsIsRotated, setoid, cyclicPermutations, instDecidableR_mathlib, isRotatedDecidable, Β«term_~r_Β»
6
Theoremscons_append_singleton, cons_getLast_dropLast, cyclicPermutations, dropLast_tail, eqv, forall, map, mem_iff, nodup_iff, perm, refl, reverse, trans, cyclicPermutations, rotate_congr, rotate_congr_iff, rotate_eq_self_iff, cyclicPermutations_cons, cyclicPermutations_eq_nil_iff, cyclicPermutations_eq_singleton_iff, cyclicPermutations_inj, cyclicPermutations_injective, cyclicPermutations_ne_nil, cyclicPermutations_nil, cyclicPermutations_of_ne_nil, cyclicPermutations_rotate, getElem?_rotate, getElem_cyclicPermutations, getElem_eq_getElem_rotate, getElem_rotate, get_cyclicPermutations, get_eq_get_rotate, get_rotate, get_rotate_one, head?_cyclicPermutations, head?_rotate, head_cyclicPermutations, isRotated_append, isRotated_comm, isRotated_concat, isRotated_cyclicPermutations_iff, isRotated_iff_mem_map_range, isRotated_iff_mod, isRotated_nil_iff, isRotated_nil_iff', isRotated_reverse_comm_iff, isRotated_reverse_iff, isRotated_singleton_iff, isRotated_singleton_iff', length_cyclicPermutations_cons, length_cyclicPermutations_of_ne_nil, length_mem_cyclicPermutations, length_rotate, length_rotate', map_rotate, mem_cyclicPermutations_iff, mem_cyclicPermutations_self, mem_rotate, nil_eq_rotate_iff, nodup_rotate, reverse_rotate, rotate'_cons_succ, rotate'_eq_drop_append_take, rotate'_length, rotate'_length_mul, rotate'_mod, rotate'_nil, rotate'_rotate', rotate'_zero, rotate_append_length_eq, rotate_cons_succ, rotate_eq_drop_append_take, rotate_eq_drop_append_take_mod, rotate_eq_iff, rotate_eq_nil_iff, rotate_eq_rotate, rotate_eq_rotate', rotate_eq_self_iff_eq_replicate, rotate_eq_singleton_iff, rotate_injective, rotate_length, rotate_length_mul, rotate_mod, rotate_nil, rotate_one_eq_self_iff_eq_replicate, rotate_perm, rotate_replicate, rotate_reverse, rotate_rotate, rotate_singleton, rotate_zero, singleton_eq_rotate_iff, zipWith_rotate_distrib, zipWith_rotate_one
94
Total100

List

Definitions

NameCategoryTheorems
IsRotated πŸ“–MathDef
27 mathmath: isRotated_iff_mem_map_range, isRotated_comm, isRotated_append, isRotated_reverse_comm_iff, IsRotated.eqv, IsRotated.refl, SimpleGraph.Walk.rotate_edges, isRotated_concat, isRotated_nil_iff', Cycle.coe_eq_coe, isRotated_iff_mod, Equiv.Perm.toList_formPerm_isRotated_self, isRotated_singleton_iff', Equiv.Perm.SameCycle.toList_isRotated, isRotated_nil_iff, isRotated_singleton_iff, IsRotated.cons_append_singleton, IsRotated.cons_getLast_dropLast, SimpleGraph.Walk.support_rotate, isRotated_cyclicPermutations_iff, IsRotated.forall, mem_cyclicPermutations_iff, formPerm_eq_formPerm_iff, formPerm_ext_iff, isRotated_reverse_iff, IsRotated.dropLast_tail, SimpleGraph.Walk.rotate_darts
cyclicPermutations πŸ“–CompOp
19 mathmath: cyclicPermutations_eq_nil_iff, Nodup.cyclicPermutations, head_cyclicPermutations, cyclicPermutations_nil, get_cyclicPermutations, length_cyclicPermutations_of_ne_nil, length_cyclicPermutations_cons, head?_cyclicPermutations, cyclicPermutations_eq_singleton_iff, mem_cyclicPermutations_self, Cycle.lists_coe, IsRotated.cyclicPermutations, cyclicPermutations_cons, isRotated_cyclicPermutations_iff, cyclicPermutations_of_ne_nil, cyclicPermutations_injective, cyclicPermutations_rotate, mem_cyclicPermutations_iff, cyclicPermutations_inj
instDecidableR_mathlib πŸ“–CompOpβ€”
isRotatedDecidable πŸ“–CompOpβ€”
Β«term_~r_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
cyclicPermutations_cons πŸ“–mathematicalβ€”cyclicPermutationsβ€”β€”
cyclicPermutations_eq_nil_iff πŸ“–mathematicalβ€”cyclicPermutationsβ€”cyclicPermutations_injective
cyclicPermutations_eq_singleton_iff πŸ“–mathematicalβ€”cyclicPermutationsβ€”cyclicPermutations_injective
cyclicPermutations_inj πŸ“–mathematicalβ€”cyclicPermutationsβ€”cyclicPermutations_injective
cyclicPermutations_injective πŸ“–mathematicalβ€”cyclicPermutationsβ€”head?_cyclicPermutations
cyclicPermutations_ne_nil πŸ“–β€”β€”β€”β€”length_cyclicPermutations_of_ne_nil
cyclicPermutations_nil πŸ“–mathematicalβ€”cyclicPermutationsβ€”β€”
cyclicPermutations_of_ne_nil πŸ“–mathematicalβ€”cyclicPermutationsβ€”cyclicPermutations_cons
cyclicPermutations_rotate πŸ“–mathematicalβ€”cyclicPermutationsβ€”rotate_nil
rotate_singleton
length_cyclicPermutations_of_ne_nil
length_rotate
get_rotate
get_cyclicPermutations
rotate_rotate
rotate_mod
getElem_cyclicPermutations
getElem?_rotate πŸ“–β€”β€”β€”β€”rotate_eq_drop_append_take_mod
lt_or_ge
LE.le.trans_lt
LT.lt.le
getElem_cyclicPermutations πŸ“–β€”cyclicPermutationsβ€”β€”rotate_nil
getElem_tails
getElem_inits
rotate_eq_drop_append_take
length_cyclicPermutations_of_ne_nil
LT.lt.le
getElem_eq_getElem_rotate πŸ“–mathematicalβ€”LT.lt.trans_eq
LE.le.trans_lt
Nat.instPreorder
length_rotate
β€”LT.lt.trans_eq
LE.le.trans_lt
length_rotate
getElem_rotate
LT.lt.le
getElem_rotate πŸ“–mathematicalβ€”LE.le.trans_lt
Nat.instPreorder
length_rotate
β€”LE.le.trans_lt
length_rotate
getElem?_rotate
LT.lt.trans_eq
get_cyclicPermutations πŸ“–mathematicalβ€”cyclicPermutationsβ€”getElem_cyclicPermutations
get_eq_get_rotate πŸ“–mathematicalβ€”LT.lt.trans_eq
LE.le.trans_lt
Nat.instPreorder
length_rotate
β€”LT.lt.trans_eq
LE.le.trans_lt
length_rotate
getElem_eq_getElem_rotate
get_rotate πŸ“–mathematicalβ€”length_rotateβ€”length_rotate
LE.le.trans_lt
getElem_rotate
get_rotate_one πŸ“–mathematicalβ€”length_rotateβ€”get_rotate
head?_cyclicPermutations πŸ“–mathematicalβ€”cyclicPermutationsβ€”cyclicPermutations_ne_nil
head_cyclicPermutations
head?_rotate πŸ“–β€”β€”β€”β€”getElem?_rotate
LE.le.trans_lt
head_cyclicPermutations πŸ“–mathematicalβ€”cyclicPermutations
cyclicPermutations_ne_nil
β€”length_pos_of_ne_nil
cyclicPermutations_ne_nil
get_cyclicPermutations
rotate_zero
isRotated_append πŸ“–mathematicalβ€”IsRotatedβ€”rotate_append_length_eq
isRotated_comm πŸ“–mathematicalβ€”IsRotatedβ€”IsRotated.symm
isRotated_concat πŸ“–mathematicalβ€”IsRotatedβ€”IsRotated.symm
rotate_cons_succ
rotate_zero
isRotated_cyclicPermutations_iff πŸ“–mathematicalβ€”IsRotated
cyclicPermutations
β€”β€”
isRotated_iff_mem_map_range πŸ“–mathematicalβ€”IsRotatedβ€”β€”
isRotated_iff_mod πŸ“–mathematicalβ€”IsRotatedβ€”rotate_nil
LT.lt.le
rotate_mod
isRotated_nil_iff πŸ“–mathematicalβ€”IsRotatedβ€”IsRotated.refl
isRotated_nil_iff' πŸ“–mathematicalβ€”IsRotatedβ€”isRotated_comm
isRotated_nil_iff
isRotated_reverse_comm_iff πŸ“–mathematicalβ€”IsRotatedβ€”IsRotated.reverse
isRotated_reverse_iff πŸ“–mathematicalβ€”IsRotatedβ€”β€”
isRotated_singleton_iff πŸ“–mathematicalβ€”IsRotatedβ€”IsRotated.refl
isRotated_singleton_iff' πŸ“–mathematicalβ€”IsRotatedβ€”isRotated_comm
isRotated_singleton_iff
length_cyclicPermutations_cons πŸ“–mathematicalβ€”cyclicPermutationsβ€”length_tails
length_inits
min_self
length_cyclicPermutations_of_ne_nil πŸ“–mathematicalβ€”cyclicPermutationsβ€”cyclicPermutations_of_ne_nil
length_tails
length_inits
min_self
length_mem_cyclicPermutations πŸ“–β€”cyclicPermutationsβ€”β€”getElem_cyclicPermutations
length_rotate
length_rotate πŸ“–β€”β€”β€”β€”rotate_eq_rotate'
length_rotate'
length_rotate' πŸ“–β€”β€”β€”β€”β€”
map_rotate πŸ“–β€”β€”β€”β€”rotate_zero
rotate_nil
rotate_cons_succ
mem_cyclicPermutations_iff πŸ“–mathematicalβ€”cyclicPermutations
IsRotated
β€”get_cyclicPermutations
IsRotated.forall
cyclicPermutations_rotate
mem_rotate
mem_cyclicPermutations_self
mem_cyclicPermutations_self πŸ“–mathematicalβ€”cyclicPermutationsβ€”cyclicPermutations_ne_nil
head_cyclicPermutations
mem_rotate πŸ“–β€”β€”β€”β€”rotate_nil
rotate_zero
rotate_cons_succ
nil_eq_rotate_iff πŸ“–β€”β€”β€”β€”rotate_eq_nil_iff
nodup_rotate πŸ“–β€”β€”β€”β€”rotate_perm
reverse_rotate πŸ“–β€”β€”β€”β€”rotate_eq_iff
rotate_zero
rotate_nil
rotate_cons_succ
rotate_rotate
rotate'_cons_succ πŸ“–β€”β€”β€”β€”β€”
rotate'_eq_drop_append_take πŸ“–β€”β€”β€”β€”rotate'_zero
rotate'_cons_succ
rotate'_length πŸ“–β€”β€”β€”β€”rotate'_eq_drop_append_take
le_rfl
rotate'_length_mul πŸ“–β€”β€”β€”β€”rotate'_zero
length_rotate'
rotate'_rotate'
rotate'_length
rotate'_mod πŸ“–β€”β€”β€”β€”rotate'_length_mul
rotate'_rotate'
length_rotate'
rotate'_nil πŸ“–β€”β€”β€”β€”β€”
rotate'_rotate' πŸ“–β€”β€”β€”β€”rotate'_cons_succ
rotate'_zero πŸ“–β€”β€”β€”β€”β€”
rotate_append_length_eq πŸ“–β€”β€”β€”β€”rotate_eq_rotate'
rotate'_zero
rotate_cons_succ πŸ“–β€”β€”β€”β€”rotate_eq_rotate'
rotate'_cons_succ
rotate_eq_drop_append_take πŸ“–β€”β€”β€”β€”rotate_eq_rotate'
rotate'_eq_drop_append_take
rotate_eq_drop_append_take_mod πŸ“–β€”β€”β€”β€”LE.le.eq_or_lt
rotate_nil
rotate_eq_drop_append_take
LT.lt.le
rotate_mod
rotate_eq_iff πŸ“–β€”β€”β€”β€”rotate_eq_rotate
rotate_rotate
rotate_mod
LE.le.eq_or_lt
rotate_nil
rotate_zero
LT.lt.le
rotate_eq_nil_iff πŸ“–β€”β€”β€”β€”rotate_zero
rotate_nil
rotate_cons_succ
rotate_eq_rotate πŸ“–β€”β€”β€”β€”rotate_injective
rotate_eq_rotate' πŸ“–β€”β€”β€”β€”rotate_nil
rotate'_mod
rotate'_eq_drop_append_take
le_of_lt
rotate_eq_self_iff_eq_replicate πŸ“–β€”β€”β€”β€”rotate_nil
head?_rotate
rotate_replicate
rotate_eq_singleton_iff πŸ“–β€”β€”β€”β€”rotate_eq_iff
rotate_singleton
rotate_injective πŸ“–β€”β€”β€”β€”length_rotate
rotate_eq_drop_append_take_mod
rotate_length πŸ“–β€”β€”β€”β€”rotate_eq_rotate'
rotate'_length
rotate_length_mul πŸ“–β€”β€”β€”β€”rotate_eq_rotate'
rotate'_length_mul
rotate_mod πŸ“–β€”β€”β€”β€”β€”
rotate_nil πŸ“–β€”β€”β€”β€”β€”
rotate_one_eq_self_iff_eq_replicate πŸ“–β€”β€”β€”β€”rotate_eq_self_iff_eq_replicate
rotate_zero
rotate_rotate
rotate_perm πŸ“–β€”β€”β€”β€”rotate_eq_rotate'
rotate'_zero
rotate'_cons_succ
rotate_replicate πŸ“–β€”β€”β€”β€”length_rotate
mem_rotate
rotate_reverse πŸ“–β€”β€”β€”β€”reverse_rotate
rotate_rotate
length_rotate
rotate_zero
rotate_length
rotate_rotate πŸ“–β€”β€”β€”β€”rotate_eq_rotate'
rotate'_rotate'
rotate_singleton πŸ“–β€”β€”β€”β€”rotate_replicate
rotate_zero πŸ“–β€”β€”β€”β€”β€”
singleton_eq_rotate_iff πŸ“–β€”β€”β€”β€”rotate_eq_singleton_iff
zipWith_rotate_distrib πŸ“–β€”β€”β€”β€”rotate_eq_drop_append_take_mod
min_self
zipWith_rotate_one πŸ“–β€”β€”β€”β€”rotate_cons_succ
rotate_zero

List.IsRotated

Definitions

NameCategoryTheorems
setoid πŸ“–CompOp
2 mathmath: Cycle.mk_eq_coe, Cycle.mk''_eq_coe

Theorems

NameKindAssumesProvesValidatesDepends On
cons_append_singleton πŸ“–mathematicalβ€”List.IsRotatedβ€”List.isRotated_append
cons_getLast_dropLast πŸ“–mathematicalβ€”List.IsRotatedβ€”symm
List.isRotated_concat
cyclicPermutations πŸ“–mathematicalList.IsRotatedList.cyclicPermutationsβ€”List.cyclicPermutations_rotate
dropLast_tail πŸ“–mathematicalβ€”List.IsRotatedβ€”β€”
eqv πŸ“–mathematicalβ€”List.IsRotatedβ€”refl
symm
trans
forall πŸ“–mathematicalβ€”List.IsRotatedβ€”symm
map πŸ“–β€”List.IsRotatedβ€”β€”List.map_rotate
mem_iff πŸ“–β€”List.IsRotatedβ€”β€”perm
nodup_iff πŸ“–β€”List.IsRotatedβ€”β€”perm
perm πŸ“–β€”List.IsRotatedβ€”β€”List.rotate_perm
refl πŸ“–mathematicalβ€”List.IsRotatedβ€”List.rotate_zero
reverse πŸ“–β€”List.IsRotatedβ€”β€”List.reverse_rotate
trans πŸ“–β€”List.IsRotatedβ€”β€”List.rotate_rotate

List.Nodup

Theorems

NameKindAssumesProvesValidatesDepends On
cyclicPermutations πŸ“–mathematicalβ€”List.cyclicPermutationsβ€”eq_or_ne
List.nodup_iff_injective_get
List.getElem_cyclicPermutations
rotate_congr_iff
List.length_cyclicPermutations_of_ne_nil
rotate_congr πŸ“–β€”β€”β€”β€”List.length_pos_of_ne_nil
List.head?_rotate
getElem_inj_iff
List.rotate_mod
rotate_congr_iff πŸ“–β€”β€”β€”β€”eq_or_ne
List.rotate_nil
rotate_congr
List.rotate_mod
rotate_eq_self_iff πŸ“–β€”β€”β€”β€”rotate_congr_iff
List.rotate_zero

---

← Back to Index