Documentation Verification Report

Cartan

šŸ“ Source: Mathlib/Data/Matrix/Cartan.lean

Statistics

MetricCount
DefinitionsA, B, C, D, E₆, E₇, Eā‚ˆ, Fā‚„, Gā‚‚, instDecidablePredMatrixIntIsSimplyLacedOfFintypeOfDecidableEq, IsSimplyLaced
11
TheoremsA_apply_le_zero_of_ne, A_diag, A_isSymm, A_one, A_three, A_transpose, A_two, B_diag, B_off_diag_nonpos, B_one, B_transpose, B_two, C_diag, C_off_diag_nonpos, C_one, C_transpose, C_two, D_diag, D_four, D_isSymm, D_off_diag_nonpos, D_one, D_three, D_three', D_transpose, D_two, E₆_diag, E₆_isSymm, E₆_off_diag_nonpos, E₆_transpose, E₇_diag, E₇_isSymm, E₇_off_diag_nonpos, E₇_transpose, Eā‚ˆ_diag, Eā‚ˆ_isSymm, Eā‚ˆ_off_diag_nonpos, Eā‚ˆ_transpose, Fā‚„_det, Fā‚„_diag, Fā‚„_off_diag_nonpos, Gā‚‚_det, Gā‚‚_diag, Gā‚‚_off_diag_nonpos, isSimplyLaced_A, isSimplyLaced_D, isSimplyLaced_E₆, isSimplyLaced_E₇, isSimplyLaced_Eā‚ˆ, not_isSimplyLaced_Fā‚„, not_isSimplyLaced_Gā‚‚, isSimplyLaced_iff_of_linearOrder, isSimplyLaced_transpose
53
Total64

CartanMatrix

Definitions

NameCategoryTheorems
A šŸ“–CompOp
12 mathmath: isSimplyLaced_A, D_three', C_one, A_isSymm, A_three, A_apply_le_zero_of_ne, A_two, D_one, A_one, B_one, A_transpose, A_diag
B šŸ“–CompOp
6 mathmath: B_off_diag_nonpos, B_diag, C_transpose, B_two, B_transpose, B_one
C šŸ“–CompOp
6 mathmath: C_two, C_off_diag_nonpos, C_transpose, C_one, B_transpose, C_diag
D šŸ“–CompOp
10 mathmath: D_four, D_isSymm, isSimplyLaced_D, D_three, D_off_diag_nonpos, D_three', D_transpose, D_two, D_one, D_diag
E₆ šŸ“–CompOp
5 mathmath: E₆_transpose, E₆_diag, isSimplyLaced_E₆, E₆_off_diag_nonpos, E₆_isSymm
E₇ šŸ“–CompOp
5 mathmath: isSimplyLaced_E₇, E₇_diag, E₇_isSymm, E₇_transpose, E₇_off_diag_nonpos
Eā‚ˆ šŸ“–CompOp
5 mathmath: Eā‚ˆ_off_diag_nonpos, Eā‚ˆ_isSymm, Eā‚ˆ_diag, isSimplyLaced_Eā‚ˆ, Eā‚ˆ_transpose
Fā‚„ šŸ“–CompOp
4 mathmath: not_isSimplyLaced_Fā‚„, Fā‚„_diag, Fā‚„_off_diag_nonpos, Fā‚„_det
Gā‚‚ šŸ“–CompOp
4 mathmath: Gā‚‚_diag, Gā‚‚_det, not_isSimplyLaced_Gā‚‚, Gā‚‚_off_diag_nonpos
instDecidablePredMatrixIntIsSimplyLacedOfFintypeOfDecidableEq šŸ“–CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
A_apply_le_zero_of_ne šŸ“–mathematical—A——
A_diag šŸ“–mathematical—Matrix.diag
A
Pi.instOfNat
——
A_isSymm šŸ“–mathematical—Matrix.IsSymm
A
—A_transpose
A_one šŸ“–mathematical—A
DFunLike.coe
Equiv
Matrix
EquivLike.toFunLike
Equiv.instEquivLike
Matrix.of
Matrix.vecCons
Matrix.vecEmpty
——
A_three šŸ“–mathematical—A
DFunLike.coe
Equiv
Matrix
EquivLike.toFunLike
Equiv.instEquivLike
Matrix.of
Matrix.vecCons
Matrix.vecEmpty
——
A_transpose šŸ“–mathematical—Matrix.transpose
A
—Matrix.ext
A_two šŸ“–mathematical—A
DFunLike.coe
Equiv
Matrix
EquivLike.toFunLike
Equiv.instEquivLike
Matrix.of
Matrix.vecCons
Matrix.vecEmpty
——
B_diag šŸ“–mathematical—B——
B_off_diag_nonpos šŸ“–mathematical—B——
B_one šŸ“–mathematical—B
A
——
B_transpose šŸ“–mathematical—Matrix.transpose
B
C
—Matrix.ext
B_two šŸ“–mathematical—B
DFunLike.coe
Equiv
Matrix
EquivLike.toFunLike
Equiv.instEquivLike
Matrix.of
Matrix.vecCons
Matrix.vecEmpty
——
C_diag šŸ“–mathematical—C——
C_off_diag_nonpos šŸ“–mathematical—C——
C_one šŸ“–mathematical—C
A
——
C_transpose šŸ“–mathematical—Matrix.transpose
C
B
—Matrix.transpose_transpose
B_transpose
C_two šŸ“–mathematical—C
DFunLike.coe
Equiv
Matrix
EquivLike.toFunLike
Equiv.instEquivLike
Matrix.of
Matrix.vecCons
Matrix.vecEmpty
——
D_diag šŸ“–mathematical—D——
D_four šŸ“–mathematical—D
DFunLike.coe
Equiv
Matrix
EquivLike.toFunLike
Equiv.instEquivLike
Matrix.of
Matrix.vecCons
Matrix.vecEmpty
——
D_isSymm šŸ“–mathematical—Matrix.IsSymm
D
—D_transpose
D_off_diag_nonpos šŸ“–mathematical—D——
D_one šŸ“–mathematical—D
A
——
D_three šŸ“–mathematical—D
DFunLike.coe
Equiv
Matrix
EquivLike.toFunLike
Equiv.instEquivLike
Matrix.of
Matrix.vecCons
Matrix.vecEmpty
——
D_three' šŸ“–mathematical—DFunLike.coe
Equiv
Matrix
EquivLike.toFunLike
Equiv.instEquivLike
Matrix.reindex
Cycle.formPerm
Cycle.ofList
Cycle.Nodup
Cycle.nodup_coe_iff
D
A
—Cycle.nodup_coe_iff
D_transpose šŸ“–mathematical—Matrix.transpose
D
—Matrix.ext
D_two šŸ“–mathematical—D
DFunLike.coe
Equiv
Matrix
EquivLike.toFunLike
Equiv.instEquivLike
Matrix.of
Matrix.vecCons
Matrix.vecEmpty
——
E₆_diag šŸ“–mathematical—E₆—Fintype.complete
E₆_isSymm šŸ“–mathematical—Matrix.IsSymm
E₆
—E₆_transpose
E₆_off_diag_nonpos šŸ“–mathematical—E₆—Fintype.complete
Matrix.cons_val'
Matrix.cons_val_fin_one
Int.instAddLeftMono
Int.instZeroLEOneClass
E₆_transpose šŸ“–mathematical—Matrix.transpose
E₆
——
E₇_diag šŸ“–mathematical—E₇—Fintype.complete
E₇_isSymm šŸ“–mathematical—Matrix.IsSymm
E₇
—E₇_transpose
E₇_off_diag_nonpos šŸ“–mathematical—E₇—Fintype.complete
Matrix.cons_val'
Matrix.cons_val_fin_one
Int.instAddLeftMono
Int.instZeroLEOneClass
E₇_transpose šŸ“–mathematical—Matrix.transpose
E₇
——
Eā‚ˆ_diag šŸ“–mathematical—Eā‚ˆā€”Fintype.complete
Eā‚ˆ_isSymm šŸ“–mathematical—Matrix.IsSymm
Eā‚ˆ
—Eā‚ˆ_transpose
Eā‚ˆ_off_diag_nonpos šŸ“–mathematical—Eā‚ˆā€”Fintype.complete
Matrix.cons_val'
Matrix.cons_val_fin_one
Int.instAddLeftMono
Int.instZeroLEOneClass
Eā‚ˆ_transpose šŸ“–mathematical—Matrix.transpose
Eā‚ˆ
——
Fā‚„_det šŸ“–mathematical—Matrix.det
Fin.fintype
Int.instCommRing
Fā‚„
——
Fā‚„_diag šŸ“–mathematical—F₄—Fintype.complete
Fā‚„_off_diag_nonpos šŸ“–mathematical—F₄—Fintype.complete
Matrix.cons_val'
Matrix.cons_val_fin_one
Int.instAddLeftMono
Int.instZeroLEOneClass
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
Nat.instAtLeastTwoHAddOfNat
Gā‚‚_det šŸ“–mathematical—Matrix.det
Fin.fintype
Int.instCommRing
Gā‚‚
——
Gā‚‚_diag šŸ“–mathematical—G₂—Fintype.complete
Gā‚‚_off_diag_nonpos šŸ“–mathematical—G₂—Fintype.complete
Matrix.cons_val'
Matrix.cons_val_fin_one
Int.instAddLeftMono
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
Nat.instAtLeastTwoHAddOfNat
Int.instZeroLEOneClass
isSimplyLaced_A šŸ“–mathematical—Matrix.IsSimplyLaced
A
——
isSimplyLaced_D šŸ“–mathematical—Matrix.IsSimplyLaced
D
——
isSimplyLaced_E₆ šŸ“–mathematical—Matrix.IsSimplyLaced
E₆
—Matrix.isSimplyLaced_iff_of_linearOrder
E₆_isSymm
isSimplyLaced_E₇ šŸ“–mathematical—Matrix.IsSimplyLaced
E₇
—Matrix.isSimplyLaced_iff_of_linearOrder
E₇_isSymm
isSimplyLaced_Eā‚ˆ šŸ“–mathematical—Matrix.IsSimplyLaced
Eā‚ˆ
—Matrix.isSimplyLaced_iff_of_linearOrder
Eā‚ˆ_isSymm
not_isSimplyLaced_Fā‚„ šŸ“–mathematical—Matrix.IsSimplyLaced
Fā‚„
——
not_isSimplyLaced_Gā‚‚ šŸ“–mathematical—Matrix.IsSimplyLaced
Gā‚‚
——

Matrix

Definitions

NameCategoryTheorems
IsSimplyLaced šŸ“–MathDef
9 mathmath: CartanMatrix.isSimplyLaced_E₇, CartanMatrix.not_isSimplyLaced_Fā‚„, CartanMatrix.isSimplyLaced_D, CartanMatrix.isSimplyLaced_A, isSimplyLaced_transpose, CartanMatrix.isSimplyLaced_E₆, CartanMatrix.isSimplyLaced_Eā‚ˆ, CartanMatrix.not_isSimplyLaced_Gā‚‚, isSimplyLaced_iff_of_linearOrder

Theorems

NameKindAssumesProvesValidatesDepends On
isSimplyLaced_iff_of_linearOrder šŸ“–mathematicalIsSymmIsSimplyLaced—LT.lt.ne'
Ne.lt_or_gt
IsSymm.apply
isSimplyLaced_transpose šŸ“–mathematical—IsSimplyLaced
transpose
—IsSimplyLaced.eq_1
Pairwise.eq_1

---

← Back to Index